Algebra

Dzieło, z którego pochodzi określenie „algebra”: Al-kitab al-muchtasar fi hisab al-dżabr wa-al-mukabala (IX w.)[1]
Algiebra dla szkół narodowych polskie wyd. z 1782 z inicjatywy Towarzystwa do Ksiąg Elementarnych

Algebra (arab. ‏الجبر‎, al-dżabr[1]) – jedna z głównych dziedzin matematyki, zajmująca się wszelkimi strukturami algebraicznymi, czyli zbiorami – lub bardziej ogólnymi klasami – wyposażonymi w działania[1]; struktury te bywają też nazywane algebrami ogólnymi. Początkowym przykładem takiego obiektu, długo definiującym tę dziedzinę, były liczby rzeczywiste ze standardowymi działaniami arytmetycznymi, a także liczby zespolone rozszerzające ten zbiór, wprowadzone właśnie na potrzeby klasycznie rozumianej algebry.

Historycznie była to nauka o równaniach algebraicznych[1], ich układach i ogólnych tożsamościach algebraicznych – regułach manipulacji symbolami zmiennych[1]. Dominowały w niej badania wielomianów o zmiennych rzeczywistych i zespolonych, rozkładu tych wielomianów na czynniki (faktoryzacji), układów równań liniowych i dwumianu Newtona[2]. Te i pokrewne tematy bywają nazywane algebrą elementarną[3]. Badania te doprowadziły do rozważań powiązanych obiektów jak macierze, wyznaczniki czy grupy permutacji[2]. XIX wiek przyniósł też nowe struktury jak kwaterniony, inne i bardziej ogólne wektory, tensory, rozwój algebry Boole’a w elementarnej logice i teorii mnogości oraz arytmetyki modularnej i algebraicznej teorii liczb dzięki rozważaniu liczb całkowitych Gaussa. Wtedy też nazwano własności różnych działań, sformalizowano je i wprowadzono kluczowe pojęcie izomorfizmu, kodyfikujące analogie między strukturami. Przez to algebra stała się nauką znacznie szerszą, badającą między innymi abstrakcyjne grupy i ich szczególne, przemienne przypadki wzbogacone o dodatkowe operacje; przykłady to przestrzenie liniowe i pierścienie, w tym ciała[2][1]. Przyczyniło się to do redefinicji matematyki, która tym sposobem przestała być nauką wyłącznie o liczbach i figurach.

Algebra cieszy się długą historią nieprzerwanego rozwoju oraz wpływu na resztę matematyki i jej zastosowania[1]. Należy do jej najstarszych dziedzin[1] – powstała już w starożytnej Mezopotamii, po czym była rozwijana przez matematyków starogreckich, indyjskich, islamskich i europejskiego średniowiecza. Wyniki matematyków chińskich jak chińskie twierdzenie o resztach stanowiły pogranicze teorii liczb i algebry elementarnej, a później zostały przez algebrę wchłonięte. W czasach nowożytnych algebra popchnęła postępy geometrii dzięki stworzeniu geometrii analitycznej, która przyczyniła się też do powstania analizy. Problemy postawione przez algebrę i jej brak samowystarczalności doprowadziły również do rozwoju kombinatoryki i metod numerycznych. W XIX wieku z udziałem algebry rozwiązano starożytne problemy geometrii związane z konstrukcjami klasycznymi. Wtedy też algebraicznie zunifikowano opis różnych rozwijanych wówczas obszarów geometrii, definiując ją na nowo, w ramach programu erlangeńskiego. Na liście problemów Hilberta z największymi wyzwaniami dla matematyki XX wieku znaczna część dotyczyła algebry, a na niektóre z tych pytań odpowiedziano. W XXI wieku nauka ta jest dalej rozwijana; stanowi język i narzędzie wielu innych dyscyplin jak geometria algebraiczna, topologia algebraiczna, teoria węzłów, analiza – zwłaszcza funkcjonalna[2] – czy teoria języków formalnych. Metody algebraiczne są też stosowane w teorii grafów, a w geometrii różniczkowej stworzyły geometrię nieprzemienną. Do algebry bywa zaliczana także teoria kategorii unifikująca rozmaite obszary matematyki i stanowiąca dla niej fundament alternatywny do teorii mnogości. Wpływ algebry sięga też poza matematykę i naukę ogółem. Litera X, używana jako podstawowe oznaczenie zmiennej i niewiadomej, stała się symbolem i przenośnią niewiedzy lub tajemnicy; wpłynęła tak m.in. na nazwę promieni rentgenowskich, partii politycznych i popkulturę.

Naukowiec zajmujący się algebrą to algebraik lub algebraiczka[4]. Przedstawiciele tej dziedziny otrzymywali najwyższe nagrody dostępne matematykom jak Medal Fieldsa czy Nagroda Abela. Istnieją również wyróżnienia w całości poświęcone algebrze jak jedna z dziedzin Nagrody Cole’a przyznawanej przez Amerykańskie Towarzystwo Matematyczne (ang. AMS).

Historia rozwoju

Starożytność babilońska i grecka

Wczesne formy algebry zostały opracowane przez Babilończyków i Greków.

Korzenie algebry sięgają czasów matematyków babilońskich, którzy opracowali zaawansowany system arytmetyczny, pozwalający na wykonywanie obliczeń w sposób algorytmiczny. Babilończycy wynaleźli wzory, przy pomocy których można było rozwiązywać problemy rozwiązywane dziś poprzez równania liniowe czy kwadratowe. Z kolei większość matematyków egipskich tej epoki, podobnie jak matematycy greccy czy chińscy w I tysiącleciu przed narodzeniem Chrystusa, zazwyczaj rozwiązywało takie równania metodami geometrycznymi, takimi jak te opisane w Papirusie Matematycznym Rhinda oraz Elementach Euklidesa. Prace Greków nad geometrią zapisane w Elementach, zapewniły podstawę do generalizacji formuł rozwiązań konkretnych problemów i użycia ich do rozwiązywania tych bardziej ogólnych systemów przedstawiania i rozwiązywania równań, jednak nie zdawano sobie z tego sprawy, aż do rozwinięcia się matematyki w średniowiecznym Islamie.

Przed czasami Platona, grecka matematyka przeszła drastyczną zmianę. Grecy stworzyli algebrę geometryczną, gdzie wyrazy algebraiczne były przedstawiane za pomocą boków obiektów geometrycznych, zazwyczaj prostych, podpisanych literami. Diofantos był greckim matematykiem z Aleksandrii oraz autorem serii ksiąg Arytmetyka, które opisują rozwiązywania równań algebraicznych i doprowadziły do współczesnej postaci równania diofantycznego w teorii liczb.

Hellenistyczni matematycy Heron i Diofantos, podobnie jak indyjscy tacy jak Brahmagupta kontynuowali tradycje Egiptu i Babilonu, mimo iż Arytmetyka Diofantosa i Brahmagupty Brahmasphutasiddhanta były na znacznie wyższym poziomie. Dla przykładu, pierwsze kompletne rozwiązanie arytmetyczne (zawierające zero i rozwiązania ujemne) równania kwadratowego zostało opisane przez Brahmagupta w jego książce Brahmasphutasiddhanta. Później, Perscy i arabscy matematycy stworzyli znacznie bardziej wyszukane metody algebraiczne. Pomimo iż Diofantus i matematycy babilońscy w dużej mierze używali metod ad hoc do rozwiązywania równań, wkład Al-Khwarizmiego był fundamentalny. Rozwiązywał on równania liniowe i kwadratowe bez użycia symboli algebraicznych, liczb ujemnych czy zera, a więc w konsekwencji wyróżnił kilka typów równań.

Indie i Chiny

Indyjscy matematycy Mahavira i Bhaskara II, perski Al-Karaji i chiński Zhu Shijie rozwiązali różne przypadki równań wielomianowych trzeciego, czwartego, piątego i wyższych stopni z wykorzystaniem metod numerycznych.

Świat islamski i średniowieczna Europa

Ilustracja metody Omara Chajjama przybliżonego rozwiązania równania kubicznego. Metody ścisłe (analityczne) pojawiły się później, w XVI w. u matematyków włoskich.

Wcześniejsze tradycje opisane wyżej miały bezpośredni wpływ na Muḥammada ibn Mūsā al-Khwārizmīego. Napisał on później The Compendious Book on Calculation by Completion and Balancing, która sprawiła, że algebra stała się działem matematyki niezależnym od arytmetyki i geometrii. Słowo algebra (arab. الجبر, al-dżabr) oznacza dosłownie „przywrócenie” i pochodzi z książki Al-Maqala fi Hisab-al Jabr wa-al-Muqabilah (O odtwarzaniu i przeciwstawianiu), napisanej w IX wieku przez słynnego perskiego matematyka Muhammada ibn Mūsā al-Khwārizmīego, który był muzułmaninem, urodzonym w Chorezmie w Uzbekistanie. Najprężniej działał pod Al-Ma’moun w Bagdadzie w okresie 813-833 r., a zmarł około 840 r. Książka została przywieziona do Europy i przetłumaczona na łacinę w XII wieku. Następnie otrzymała nazwę „Algebra”. Zakończenie nazwiska matematyka: al-Khwārizmī zostało zmienione na słowo łatwiejsze do wypowiedzenia po łacinie i ostatecznie stało się angielskim słowem – algorytm. Wspomniani już wcześniej grecki matematyk Diofantos oraz al-Khwārizmī uważani są za „ojców algebry”.

Innemu perskiemu matematykowi Omarowi Khayyamowi przypisuje się określenie podstawy geometrii algebraicznej i znalezienie rozwiązania ogólnego równania geometrycznego sześciennego. Jeszcze inny perski matematyk, Sharaf al-Dīn al-Tūsī, znalazł algebraiczne rozwiązania numeryczne do różnych przypadków równań sześciennych. On także rozwinął koncepcję funkcji.

W XIII w. rozwiązanie równania sześciennego przez Fibonacciego było początkiem ożywienia w europejskiej algebrze. Tutaj algebra rozwijała się bardzo szybko.

Wczesna nowożytność

Wykres przykładowej funkcji wielomianowej trzeciego stopnia. Jej miejsca zerowe (pierwiastki) są opisane wzorami Cardana

Kolejnym kluczowym wydarzeniem w dalszym rozwoju algebry było ogólne algebraiczne rozwiązanie równań trzeciego i czwartego stopnia, opracowane w XVI wieku (Scipione del Ferro, Niccolò Tartaglia, Girolamo Cardano, Lodovico Ferrari). Cardano oraz Rafael Bombelli opisali także jako pierwsi liczby zespolone. Praca François Viète’a nad nową algebrą u schyłku XVI wieku była ważnym krokiem w kierunku nowoczesnej algebry. W 1637 Kartezjusz opublikował La Géométrie, wymyślając geometrię analityczną i wprowadził nowoczesną notację algebraiczną.

Pomysł wyznacznika został opracowany przez japońskiego matematyka Kowa Sekiego w wieku XVII, co niezależnie kontynuował Gottfried Leibniz 10 lat później w rozwiązywaniu układów równań liniowych z wykorzystaniem macierzy.

XVIII wiek

Gabriel Cramer również przysłużył się pracy nad macierzami i wyznacznikami (wzory Cramera). Liczby zespolone powiązano z funkcją wykładniczą (Leonhard Euler) i zaczęto je opisywać za pomocą płaszczyzny (Caspar Wessel, Jean-Robert Argand i Carl Friedrich Gauss).

U schyłku XVIII wieku, w toku badań nad równaniami wielomianowymi, narodziły się zręby teorii grup permutacji – w pracach Lagrange’a i Ruffiniego.

XIX wiek

Diagram cykli w grupie kwaternionów Q8

XIX stulecie to rewolucja w algebrze – rozwiązano jej tradycyjne problemy i bardzo poszerzono jej zakres badań, tworząc algebrę abstrakcyjną. Kluczowe kroki uczynili tu m.in. Niels Henrik Abel i Évariste Galois – ich twierdzenia o równaniach wielomianowych to początki teorii Galois. Leżącą w jej sercu teorię grup rozwijali potem Marie Ennemond Camille Jordan, Leopold Kronecker, Felix Klein, Ferdinand Georg Frobenius, Richard Dedekind, Otto Ludwig Hölder, Peter Sylow i Marius Sophus Lie, a ten ostatni otworzył jej nową dziedzinę – teorię grup Liego.

Augustus De Morgan wynalazł relacje w algebrze, o których pisał w swoim dziele Syllabus of a Proposed System of Logic. Związek algebry z logiką opisał też George Boole.

Rozwinięto także algebrę liniową i teorię algebr nad ciałem:

W XIX wieku rozwinięto też zastosowanie algebry do teorii liczb – powstała algebraiczna teoria liczb.

XX wiek

XX stulecie przyniosło znaczące wyniki w teorii grup skończonych. Udowodniono między innymi twierdzenie Feita-Thompsona o rozwiązalności oraz ukończono klasyfikację skończonych grup prostych, m.in. dzięki opisaniu nowych obiektów jak grupa monstrum.

W XX wieku rozwinięto także nowe dziedziny matematyki jak algebra homologiczna oraz leżąca na pograniczu algebry teoria kategorii. Zdefiniowano też ściśle (aksjomatycznie) przedmiot badań algebry liniowej i rozwinięto jej obliczeniowy aspekt, np. opisując algorytm Strassena.

Dla algebry znaleziono też nowe zastosowania, np. w:

W latach 20. Amerykańskie Towarzystwo Matematyczne (ang. AMS) ustanowiło Nagrodę Cole’a w dziedzinie algebry.

Znaczący algebraicy

wpływowi algebraicy – w kolejnych wierszach:

Al-Chuwarizmi (IX w.),
Girolamo Cardano (XVI w.) ,
René Descartes (XVII w.),
E.W. Tschirnhaus (XVII–XVIII w.),
Leonhard Euler (XVIII w.),
J.L. Lagrange (XVIII–XIX w.),
C.F. Gauss (XVIII–XIX w.),
Évariste Galois (XIX w.),
Hermann Grassmann (XIX w.),
F.G. Frobenius (XIX–XX w.),
J.G. Thompson (XX–XXI w.),

Peter Scholze (XXI w.)

Przykłady

Wyrażenia algebraiczne:

suma
różnica
lub iloczyn lub czterokrotność liczby g
kombinacja liniowa lub iloczyn skalarny (w zależności od kontekstu)
iloraz
potęga

Przekształcenia wyrażenia algebraicznego:

redukcja wyrazów podobnych

Podział

Niektóre działy algebry to:

Zobacz też

Przypisy

  1. a b c d e f g h algebra, [w:] Encyklopedia PWN [online] [dostęp 2022-02-10].
  2. a b c d Zdzisław Opial, Algebra wyższa, Państwowe Wydawnictwo Naukowe, Warszawa 1972, Wstęp.
  3. publikacja w otwartym dostępie – możesz ją przeczytać Michał Feldblum, Algebra elementarna, E. Wende i S-ka, Warszawa 1922, skan w bibliotece Polona, polona.pl [dostęp 2022-02-10].
  4. publikacja w otwartym dostępie – możesz ją przeczytać algebraik – definicja, synonimy, przykłady użycia [w]: Słownik języka polskiego PWN [online] [dostęp 2022-02-14].

Linki zewnętrzne

Media użyte na tej stronie

Hermann Graßmann.jpg
Hermann Graßmann (deutscher Mathematiker und Sprachwissenschaftler)
REF new (questionmark).svg
Autor: Sławobóg, Licencja: LGPL
Icon for missing references
Al-Khwarizmi portrait.jpg
Autor: Michel Bakni , Licencja: CC BY-SA 4.0
An imaginary portrait for Al-Khwarizmi derived from a soviet stamp.
Omar Kayyám - Geometric solution to cubic equation.svg
Omar Kayyám's Geometric solution to cubic equation. To solve the third-degree equation x^3 + a^2x = b Khayyám constructed the parabola x^2 = ay, a circle with diameter b/a^2, and a vertical line through the intersection point. The solution is given by the length of the horizontal line segment from the origin to the intersection of the vertical line and the x-axis.
Carl Friedrich Gauss.jpg
Portrait of the mathematician and philosopher Carl Friedrich Gauss
Peter Scholze (cropped).jpg
Autor: George Bergman , Licencja: GFDL 1.2
Picture of Peter Scholze
John Griggs Thompson (cropped).jpg
Autor: Renate Schmid, Licencja: CC BY-SA 2.0 de
John Griggs Thompson
Evariste galois.jpg
Portrait of Évariste Galois, young man in front of bust coating a redingote.
GeorgFrobenius (cropped).jpg
Autor: Furfur, Licencja: CC BY-SA 3.0
Photography of the mathematician Georg Frobenius
1782 Algiebra dla szkół narodowych.png
1782 Algiebra dla szkół narodowych.
KdV cubic polynomial 2.svg
Autor: , Licencja: CC BY-SA 3.0
Cubic polynomial, as associated with the derivation of exact solutions for the Korteweg–de Vries equation and Benjamin–Bona–Mahony equation, propagating with a constant speed.
Лагранж.jpg
Joseph-Louis Lagrange
Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg
صفحه‌ای از کتاب المختصر فی حساب الجبر والمقابله اثر خوارزمی
GroupDiagramQ8.svg
Cycle diagram of the Q8 group