Analiza funkcjonalna

Analiza funkcjonalna – dział analizy matematycznej zajmujący się głównie badaniem własności przestrzeni funkcyjnych. Rozwinął się w trakcie studiów nad odwzorowaniami zwanymi transformacjami lub operatorami (przede wszystkim nad transformacją Fouriera) oraz równaniami różniczkowymi i całkowymi.

Słowo funkcjonał pochodzi z rachunku wariacyjnego, gdzie oznacza funkcję, której argument jest funkcją (ale wartość jest liczbą). Prawdopodobnie, od słowa „funkcjonał” pochodzi nazwa „analiza funkcjonalna”, chociaż w niej bada się także bardziej ogólne operatory, których zarówno argumenty jak i wartości są wektorami (to znaczy wartość może nie być liczbą).

Analiza funkcjonalna została rozpowszechniona przez matematyka i fizyka Vito Volterrę, zaś jej podstawy zostały stworzone przez polskiego matematyka Stefana Banacha[1].

Przestrzenie badane w analizie funkcjonalnej

W ogólności analiza funkcjonalna zajmuje się również badaniem przestrzeni Frécheta i innych przestrzeni liniowo-topologicznych. Podstawowymi przestrzeniami badanymi w analizie funkcjonalnej są jednak unormowane zupełne przestrzenie liniowe nad ciałem liczb rzeczywistych lub zespolonych. Takie przestrzenie noszą nazwę przestrzeni Banacha.

Przykładami przestrzeni Banacha są przestrzenie Hilberta, w których norma pochodzi od iloczynu skalarnego. Przestrzenie Hilberta mają podstawowe znaczenie w matematycznym sformułowaniu mechaniki kwantowej.

Ważnym obiektem badań analizy funkcjonalnej są ciągłe przekształcenia (funkcjonały) liniowe na przestrzeniach Banacha i Hilberta. Badania własności przestrzeni takich funkcjonałów doprowadziły do sformułowania pojęć C*-algebr i innych algebr operatorów.

Przestrzenie badane w analizie funkcjonalnej są w szczególności przestrzeniami liniowymi, więc w pewnym sensie przedmiot badań analizy funkcjonalnej jest zbliżony do przedmiotu badań algebry liniowej. Niemniej jednak badania w tych dwóch dziedzinach mają całkiem różny charakter, głównie dlatego, że algebra liniowa jest zainteresowana własnościami algebraicznymi badanych przestrzeni i często ogranicza się do przestrzeni skończeniewymiarowych. W analizie funkcjonalnej struktura algebraiczna (choć ważna) ma drugorzędne znaczenie, a centralnymi obiektami są topologie, normy i iloczyny skalarne. Stąd też większość rozważanych przestrzeni jest nieskończeniewymiarowa, a stosowane metody mają często topologiczny czy nawet teoriomnogościowy charakter.

Najważniejsze wyniki

Poniżej są wymienione główne i podstawowe wyniki z dziedziny analizy funkcjonalnej.

  • Twierdzenie Banacha-Steinhausa (znane również jako zasada jednostajnej ograniczoności) dotyczy ograniczonych zbiorów operatorów.
  • Twierdzenie spektralne podaje reprezentację operatorów samosprzężonych na przestrzeni Hilberta poprzez całki względem specjalnych miar spektralnych. Ma ono centralne znaczenie w matematycznym sformułowaniu mechaniki kwantowej.
  • Twierdzenie Hahna-Banacha mówi o rozszerzaniu funkcjonałów z podprzestrzeni na całą przestrzeń, z zachowaniem normy. Jednym z wniosków jest nietrywialność przestrzeni dualnych.
  • Twierdzenie Banacha o odwzorowaniu otwartym oraz twierdzenie o wykresie domkniętym.

Zobacz też

  • operator liniowy
  • operator nieliniowy
  • widmo operatora

Przypisy

  1. Analiza funkcjonalna, [w:] Encyklopedia PWN [online] [dostęp 2021-07-21].