Aproksymacja liniowa

Styczna do wykresu funkcji przechodząca przez punkt

Aproksymacja liniowa funkcji – przybliżenie jej za pomocą funkcji liniowej.

Interpolacja liniowa

Szczególnym przypadkiem aproksymacji liniowej jest interpolacja liniowa, w której wybierane są dwa różne argumenty funkcji, zwane węzłami, po czym konstruowana jest funkcja liniowa mająca w węzłach te same wartości co funkcja przybliżana.

Aproksymacja za pomocą wzoru Taylora

Dla danej funkcji różniczkowalnej jednej zmiennej, na mocy wzoru Taylora dla można napisać:

gdzie jest tzw. resztą Peana, spełniającą warunek:

Wyrażenie aproksymujące powstaje przez odrzucenie reszty:

i przybliżenie to jest tym lepsze, im jest bliższe Wyrażenie po prawej stronie przedstawia równanie prostej stycznej do wykresu funkcji w punkcie o współrzędnych

Analogiczne wyrażenie otrzymamy dla funkcji o wartościach (lub argumentach) wektorowych, przy czym pochodną zastępuje macierz Jacobiego funkcji. Na przykład jeżeli jest funkcją rzeczywistą dwóch zmiennych, otrzymujemy wzór:

Wyrażenie po prawej stronie przedstawia równanie płaszczyzny stycznej do powierzchni, będącej wykresem funkcji w punkcie o współrzędnych

Uogólnienie powyższego na przypadek przestrzeni Banacha wygląda następująco:

gdzie jest pochodną Frecheta funkcji dla

Przykład

Aproksymację liniową można wykorzystać do obliczenia przybliżonej wartości

  1. Rozważana jest funkcja Problem polega na obliczeniu przybliżonej wartości funkcji
  2. Jest
  3. Korzystając z aproksymacji liniowej:
  4. Otrzymany wynik 2,926, niewiele różni się od wartości dokładnej 2,924…

Media użyte na tej stronie

TangentGraphic2.svg
Muestra un curva generica y una tangente en un punto 'a'.