Benoît Mandelbrot
Benoît Mandelbrot na konferencji TED (2010) | |
Państwo działania | |
---|---|
Data i miejsce urodzenia | 20 listopada 1924 |
Data i miejsce śmierci | 14 października 2010 |
Doktor nauk matematyka, aerodynamika | |
Alma Mater | |
Doktorat | 1952 – matematyka |
Uczelnia | |
Odznaczenia | |
2003 Nagroda Japońska 1993 Nagroda Wolfa (fizyka) 1989 Harvey Prize 1986 Franklin Medal 1985 Barnard Medal |
Benoît B. Mandelbrot, imię przy narodzeniu: Benedykt[1] (ur. 20 listopada 1924 w Warszawie, zm. 14 października 2010 w Cambridge, Massachusetts) – francuski i amerykański matematyk[2][3] polsko-żydowskiego pochodzenia. Zajmował się szerokim zakresem problemów matematycznych, znany jest przede wszystkim jako ojciec geometrii fraktalnej, opisał zbiór Mandelbrota oraz wymyślił samo słowo „fraktal”.
Bratanek Szolema Mandelbrojta[1].
Życiorys
Urodził się w rodzinie litewskich Żydów mieszkających po I wojnie światowej w Polsce, jako syn lekarki i handlarza odzieżą[1]. W latach 1924–1936 mieszkał w Polsce, a w latach 1936–1957 we Francji. Pracował w Centre national de la recherche scientifique w Paryżu, a następnie na Uniwersytecie w Lille. Od 1957 pracował w USA dla firmy IBM, miał zatem dostęp do najnowocześniejszych komputerów. Mandelbrot dotarł do prac dwóch francuskich matematyków: Gastona Julii i Pierre’a Fatou, którzy badali zachowanie się iteracji pewnych funkcji zespolonych. Wykorzystał do tego celu komputery. Uzyskane przez niego wykresy zostały nazwane fraktalami.
W 1993 został uhonorowany Nagrodą Wolfa w fizyce, a w 2003 został wyróżniony prestiżową Nagrodą Japońską. Otrzymał 16 tytułów doktora honoris causa[4] oraz inne wyróżnienia, m.in. Medal im. Wacława Sierpińskiego[5].
Zmarł w hospicjum w Cambridge (Massachusetts) na raka trzustki[6].
Fraktale
Przypisy
- ↑ a b c Zofia Gołąb-Meyer. Benoit Mandelbrot (1924–2010) – ojciec geometrii fraktalnej. „Foton”. 112, s. 50, Wiosna 2011. Instytut Fizyki Uniwersytetu Jagiellońskiego.
- ↑ Benoit B. Mandelbrot Biography. Bookrags. [dostęp 2017-09-09]. (ang.).
- ↑ Mandelbrot Benoît B., [w:] Encyklopedia PWN [online] [dostęp 2017-09-09] .
- ↑ Marek Matacz. Pan od fraktali. „Wiedza i Życie”. 7/2010. s. 60–63.
- ↑ Medal i Wykład im. Wacława Sierpińskiego na stronie PTM, https://www.ptm.org.pl/konkursy/wyklady-im-waclawa-sierpinskiego.
- ↑ Jascha Hoffman: Benoit Mandelbrot, Novel Mathematician, Dies at 85. The New York Times, 2010-10-16. [dostęp 2017-09-09]. (ang.).
Linki zewnętrzne
- John J. O'Connor; Edmund F. Robertson: Benoît Mandelbrot w MacTutor History of Mathematics archive (ang.)
- Benoit B. Mandelbrot. Yale University. [dostęp 2017-09-09]. (ang.).
- Benoît Mandelbrot: Fractals and the art of roughness. Ted – Ideas worth spreading, luty 2010. [dostęp 2017-09-09]. (ang.).
- A Radical Mind. Public Broadcasting Service, 10 stycznia 2008. [dostęp 2017-09-09]. (ang.).
- ISNI: 0000 0001 2096 8076
- VIAF: 107586686
- LCCN: n81107154
- GND: 118974203
- NDL: 00448659
- LIBRIS: 97mpsxxt2cgvz4g
- BnF: 11914221j
- SUDOC: 027005518
- NLA: 35685251
- NKC: xx0012614
- RSL: 000135469
- BNE: XX973828
- NTA: 069512167
- BIBSYS: 90065702
- CiNii: DA00187535
- Open Library: OL216917A
- PLWABN: 9810692601805606
- NUKAT: n99022782
- J9U: 987007524345905171
- PTBNP: 38377
- CANTIC: a11299010
- LNB: 000058589
- NSK: 000327195
- CONOR: 55219043
- ΕΒΕ: 183483
- BLBNB: 000345783
- KRNLK: KAC201006355
- LIH: LNB:BESi;=BZ
- WorldCat: lccn-n81107154
Media użyte na tej stronie
The flag of Navassa Island is simply the United States flag. It does not have a "local" flag or "unofficial" flag; it is an uninhabited island. The version with a profile view was based on Flags of the World and as a fictional design has no status warranting a place on any Wiki. It was made up by a random person with no connection to the island, it has never flown on the island, and it has never received any sort of recognition or validation by any authority. The person quoted on that page has no authority to bestow a flag, "unofficial" or otherwise, on the island.
Logo of The Japan Prize Foundation.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 4 of a zoom sequence: The central endpoint of the "seahorse tail" is also a Misiurewicz point.
- Coordinates of the center: Re(c) = -.743,566,9, Im(c) = . 131,402,3
- Horizontal diameter of the image: .002,287,8
- Magnification relative to the initial image: 1,344.9
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
An icon designating the Wolf Foundation logo. Note, that the icon is not a small copy of the Wolf's logo: it was simplified (lost some curves) for legibility.
Mandelbrot set zoom step 16. Just beyond File:Mandel zoom 15 one island.jpg. Retrieved from [1].
Autor: Wolfgang Beyer, Licencja: CC-BY-SA-3.0
* Partial view of the Mandelbrot set. Step 14 of a zoom sequence: On the first sight these islands seem to consist on infinitely many parts like Cantor sets, as it is actually the case for the corresponding Julia set Jc. Here they are connected by tiny structures so that the whole represents a simply connected set. These tiny structures meet each other at a satellite in the center which is too small to be recognized at this magnification. The value of c for the corresponding Jc is not that of the image center but has relative to the main body of the Mandelbrot set the same position as the center of this image relative to the satellite shown in zoom step 7.
- Coordinates of the center: Re(c) = -.743,643,887,037,151, Im(c) = .131,825,904,205,330
- Horizontal diameter of the image: .000,000,000,051,299
- Magnification relative to the initial image: 59,979,000,000
Autor: Steve Jurvetson, Licencja: CC BY 2.0
Benoit Mandelbrot talking at TED (Technology, Entertainment, Design) conference
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 9 of a zoom sequence: The "seahorse valley" of the satellite. All the structures from the image of zoom step 1 reappear.
- Coordinates of the center: Re(c) = -.743,644,099,61, Im(c) = .131,826,046,88
- Horizontal diameter of the image: .000,000,662,08
- Magnification relative to the initial image: 4,647,300
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 10 of a zoom sequence: Double-spirals and "seahorses". Unlike the image of zoom step 2 they have appendices consisting of structures like "seahorse tails". This demonstrates the typical linking of n+1 different structures in the environment of satellites of the order n, here for the simplest case n=1.
- Coordinates of the center: Re(c) = -.743,643,862,69, Im(c) = .131,825,902,71
- Horizontal diameter of the image: .000,000,135,26
- Magnification relative to the initial image: 22,748,000
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 2 of a zoom sequence: On the left double-spirals, on the right "seahorses".
- Coordinates of the center: Re(c) = -.759,856, Im(c) = .125,547
- Horizontal diameter of the image: .051,579
- Magnification relative to the initial image: 59,654
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Mandelbrot set. Initial image of a zoom sequence: Mandelbrot set with continuously colored environment.
- Coordinates of the center: Re(c) = -.7, Im(c) = 0
- Horizontal diameter of the image: 3.076,9
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 5 of a zoom sequence: Part of the "tail". There is only one path consisting of the thin structures which leads through the whole "tail". This zigzag path passes the "hubs" of the large objects with 25 "spokes" on the inner and outer sides of the "tail". It makes sure, that the Mandelbrot set is a so called simply connected set. That means there are no islands and no loop roads around a hole.
- Coordinates of the center: Re(c) = -.743,649,90, Im(c) = . 131,882,04
- Horizontal diameter of the image: .000,738,01
- Magnification relative to the initial image: 4,169.2
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 8 of a zoom sequence: "Antenna" of the satellite. Several satellites of second order can be recognized.
- Coordinates of the center: Re(c) = -.743,644,786,0, Im(c) = .131,825,253,6
- Horizontal diameter of the image: .000,002,933,6
- Magnification relative to the initial image: 1,048,800
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 6 of a zoom sequence: Satellite. The two "seahorse tails" are the beginning of a series of concentrical crowns with the satellite in the center.
- Coordinates of the center: Re(c) = -.743,640,85, Im(c) = .131,827,33
- Horizontal diameter of the image: .000,120,68
- Magnification relative to the initial image: 25,497
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 4 of a zoom sequence: The central endpoint of the "seahorse tail" is also a Misiurewicz point.
- Coordinates of the center: Re(c) = -.743,643,900,055, Im(c) = .131,825,890,901
- Horizontal diameter of the image: .000,000,049,304
- Magnification relative to the initial image: 62,407,000
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 13 of a zoom sequence: Part of the "double-hook".
- Coordinates of the center: Re(c) = -.743,643,887,173,42, Im(c) = .131,825,904,251,82
- Horizontal diameter of the image: .000,000,000,598,49
- Magnification relative to the initial image: 5,141,100,000
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 12 of a zoom sequence: In the outer part of the appendices islands of structures can be recognized. They have a shape like Julia sets Jc. The largest of them can be found in the center of the "double-hook" on the right side.
- Coordinates of the center: Re(c) = -.743,643,888,570,6, Im(c) = .131,825,904,312,4
- Horizontal diameter of the image: .000,000,004,149,3
- Magnification relative to the initial image: 741,550,000
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 1 of a zoom sequence: Gap between the "head" and the "body" also called the "seahorse valley".
- Coordinates of the center: Re(c) = -.875,91, Im(c) = .204,64
- Horizontal diameter of the image: .531,84
- Magnification relative to the initial image: 5.785,4
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 7 of a zoom sequence: Each of these crowns consists of similar "seahorse tails". Their number increases with powers of 2, a typical phenomenon in the environment of satellites. The unique path to the spiral center mentioned in zoom step 5 passes the satellite from the groove of the cardioid to the top of the "antenna" on the "head". Also observe that the starting view is located in the center.
- Coordinates of the center: Re(c) = -.743,643,135, Im(c) = .131,825,963
- Horizontal diameter of the image: .000,014,628
- Magnification relative to the initial image: 210,350
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.
Autor: Created by Wolfgang Beyer with the program Ultra Fractal 3., Licencja: CC-BY-SA-3.0
Partial view of the Mandelbrot set. Step 3 of a zoom sequence: "Seahorse" upside down. Its "body" is composed by 25 "spokes" consisting of 2 groups of 12 "spokes" each and one "spoke" connecting to the main cardioid. These 2 groups can be attributed by some kind of metamorphosis to the 2 "fingers" of the "upper hand" of the Mandelbrot set. Therefore the number of "spokes" increases from one "seahorse" to the next by 2. The "hub" is a so called Misiurewicz point. Between the "upper part of the body" and the "tail" a distorted satellite can be recognized.
- Coordinates of the center: Re(c) = -.743,030, Im(c) = .126,433
- Horizontal diameter of the image: .016,110
- Magnification relative to the initial image: 190.99
- Created by Wolfgang Beyer with the program Ultra Fractal 3.
- Uploaded by the creator.