Bizmut

Bizmut
ołów ← bizmut → polon
Wygląd
różowoszary
bizmut naturalny
(c) Rob Lavinsky, iRocks.com – CC-BY-SA-3.0
Syntetyczny kryształ bizmutu o dużej czystości (opalizacja jest spowodowana cienką warstwą tlenku na powierzchni)
bizmut naturalnySyntetyczny kryształ bizmutu o dużej czystości (opalizacja jest spowodowana cienką warstwą tlenku na powierzchni)
Widmo emisyjne bizmutu
Widmo emisyjne bizmutu
Ogólne informacje
Nazwa, symbol, l.a.

bizmut, Bi, 83
(łac. bismutum)

Grupa, okres, blok

15, 6, p

Stopień utlenienia

III, V

Właściwości metaliczne

metal

Właściwości tlenków

średnio kwaśne

Masa atomowa

208,98 ± 0,01[a][4]

Stan skupienia

stały

Gęstość

9790 kg/m³[1]

Temperatura topnienia

271,406 °C[1]

Temperatura wrzenia

1564 °C[1]

Numer CAS

7440-69-9

PubChem

5359367

Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)
Syntetyczne kryształy czystego bizmutu. Obok sześcian (1 cm³) bizmutu o czystości 99,99%
Kryształ lejkowaty bizmutu

Bizmut (Bi, łac. bisemutum, bismuthum lub bismutum) – pierwiastek chemiczny, metal bloku p układu okresowego.

Nazwa pochodzi od zlatynizowanego[5] niemieckiego słowa Wismut[6], pochodzącego od określenia weisse Masse, ‘biała masa’[5].

Właściwości

Czysty bizmut jest kruchym metalem o srebrnym połysku z różowymi refleksami. Jako jedna z nielicznych substancji wykazuje inwersję rozszerzalności termicznej – przy obniżaniu temperatury zmniejsza się jego gęstość, gęstość bizmutu w stanie stałym jest mniejsza niż w stanie ciekłym (podobne właściwości wykazuje woda poniżej 4 °C)[7]. Nie reaguje z tlenem i wodą w warunkach normalnych. Roztwarza się w stężonym kwasie azotowym.

Bizmut ogrzany do temperatury topnienia, a następnie wolno oziębiany spontanicznie tworzy kryształy lejkowate. Gdy oziębianie jest powolne, rozmiary kryształów mogą być bardzo duże[8].

Występowanie

Występuje w skorupie ziemskiej w ilości 0,048 ppm (2 razy więcej niż złoto) w postaci trzech rud: bizmutynu Bi
2
S
3
, bizmutytu (BiO)
2
CO
3
i ochry bizmutowej, które stanowią zwykle zanieczyszczenie rud ołowiu i miedzi. Rzadko występuje w postaci rodzimej (elementarnej).

Związki

W związkach bizmut jest zazwyczaj trójwartościowy (stopień utlenienia III) i wykazuje właściwości zasadowe. Tworzy tlenek bizmutu(III) Bi
2
O
3
, wodorotlenek bizmutu(III) Bi(OH)
3
oraz szereg soli zasadowych zawierających ugrupowanie bizmutylowe O=Bi+
(np. chlorek bizmutylu, O=BiCl). Jako jedyny pierwiastek 15 grupy tworzy trwałe sole z kwasami tlenowymi, np. siarczan bizmutu(III), Bi
2
(SO
4
)
3
. Ponadto znane są sole bizmutu i kwasów beztlenowych (halogenki BiX
3
, siarczek bizmutu(III) Bi
2
S
3
). Wszystkie sole bizmutu łatwo ulegają hydrolizie do soli bizmutylowych.

Bizmutowodór (bizmutyna), BiH
3
, jest nietrwałym, trującym gazem (temp. wrz. ok. 20 °C) o właściwościach redukujących. Bizmut(III) tworzy też bezpośrednie połączenia z metalami, bizmutki typu M
3
Bi
, np. bizmutek sodu Na
3
Bi
i bizmutek magnezu Mg
3
Bi
2
.

Znanych jest wiele związków kompleksowych bizmutu, np. zawierających anion [BiCl
4
]
, [BiCl
5
]2−
, [BiCl
5
]3−
, [Bi
2
Cl
7
]
, [Bi(SO
4
)
2
]
i in. Z ligandami kleszczowymi tworzy chelaty, np. [Bi(O
2
C
6
H
4
)
2
]
. Halogenki bizmutu są kwasami Lewisa i z donorami elektronów tworzą kompleksy typu Et2O→BiCl3.

Na stopniu utlenienia V bizmut wykazuje właściwości kwasowe i tworzy nietrwałe sole – bizmutany typu MBiO
3
o silnych właściwościach utleniających (np. bizmutan potasowy, KBiO
3
).

Związki bizmutoorganiczne

Podobnie jak pozostałe pierwiastki grupy 15, bizmut(III) tworzy połączenia z resztami organicznymi typu R
3
Bi
oraz R
3
BiZ
2
(R – reszta organiczna, Z – anion nieorganiczny), np. (CH
3
)
3
Bi
, Ph
3
Bi
, Ph
3
BiF
2
lub Ph
3
Bi(OH)
2
.

Izotopy

Bizmut ma 35 izotopów z przedziału mas 184–218. Żaden z nich nie jest trwały. W 2003 roku we francuskim Institut d’Astrophysique Spatiale w Orsay wyznaczono półokres rozpadu najtrwalszego izotopu bizmutu 209
Bi
na ok. 1,9×1019 lat (tj. ponad miliard razy więcej niż szacowany wiek Wszechświata)[9], wcześniej szacowanego na 1018[10] lat. Ta śladowa radioaktywność nie stanowi zagrożenia biologicznego, ma jednak znaczenie naukowe, gdyż potwierdziła wcześniejsze obliczenia teoretyczne wskazujące na niestabilność wszystkich izotopów bizmutu. W naturalnym bizmucie występują też śladowe ilości radioizotopów, np. 210
Bi
(ok. 50 ppm składu izotopowego).

Bizmut-210

Emituje promieniowanie beta o energii 1,162 MeV, przekształcając się w 210
Po
. Często występuje w równowadze promieniotwórczej ze swoim prekursorem, 210
Pb
. Jest wysoce radiotoksyczny. Narząd krytyczny stanowią nerki, a dopuszczalne skażenie zostało ustalone na 1,5 kBq.

Zastosowanie

Bizmut jest znany od XV wieku. Głównymi producentami są Chiny, Wietnam i Meksyk. W XXI w. jego cena wzrosła od ok. 6 $/kg w 2000 r. do ok. 30 $/kg w 2007 r.

Znaczenie

Znaczenie biologiczne – brak lub nieznane[12][7]. Występuje w kościach i krwi (ok. 0,2 ppm). Jego sole i tlenki są nietoksyczne, mimo że jest metalem ciężkim. Sole bizmutu stosowane są w leczeniu wrzodów żołądka spowodowanych zakażeniem Helicobacter pylori[13]. Niewiele wiadomo o toksyczności bizmutu[11][14]. Nie wykazano upośledzenia i odstępstw od normy w rozwoju szczurów, którym przez 28 dni podawano bizmut w dawkach 0, 40, 200, 1000 mg na kg masy ciała, dla obu płci; ustalono, iż LD50 > 2000 mg/kg masy ciała (vide: dawka śmiertelna)[14].

Uwagi

  1. Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 208,98040 ± 0,00001.

Przypisy

  1. a b c David R. Lide (red.), CRC Handbook of Chemistry and Physics, wyd. 90, Boca Raton: CRC Press, 2009, s. 4–51, ISBN 978-1-4200-9084-0 (ang.).
  2. Bismuth (nr 264008) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Stanów Zjednoczonych. [dostęp 2011-10-02]. (przeczytaj, jeśli nie wyświetla się prawidłowa wersja karty charakterystyki)
  3. Cucka, P., Barrett, C. S. The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. „Acta Cryst.”. 15 (9), s. 865–872, 1962. DOI: 10.1107/S0365110X62002297 (ang.). 
  4. Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI10.1515/pac-2019-0603 (ang.).
  5. a b Andrew Ede, The Chemical Element: A Historical Perspective, Greenwood Publishing Group, 2006, ISBN 978-0-313-33304-0 [dostęp 2019-05-05] (ang.).
  6. Bismuth – Definition. Merriam-Webster Dictionary. [dostęp 2010-08-22].
  7. a b c Bismuth – Element information, properties and uses | Periodic Table, rsc.org [dostęp 2018-06-13] (ang.).
  8. William Tiller: The Science of Crystallization: Microscopic Interfacial Phenomena. Cambridge University Press, 1991, s. 2. ISBN 0-521-38827-9.
  9. de Marcillac P., Coron N., Dambier G., Leblanc J., Moalic JP. Experimental detection of alpha-particles from the radioactive decay of natural bismuth. „Nature”. 6934 (422), s. 876–878, kwiecień 2003. DOI: 10.1038/nature01541. PMID: 12712201. 
  10. Ryszard Szepke: 1000 słów o atomie i technice jądrowej. MON, 1982, s. 30. ISBN 83-11-06723-6. (pol.)
  11. a b Yuri Sano i inni, A 13-week toxicity study of bismuth in rats by intratracheal intermittent administration, „Journal of Occupational Health”, 47 (3), 2005, s. 242–248, ISSN 1341-9145, PMID15953846 [dostęp 2018-06-13].
  12. Bizmut, Układ Odpornościowy [dostęp 2017-09-12].
  13. publikacja w otwartym dostępie – możesz ją przeczytać Łukasz Szczygieł. Medyczne zastosowanie związków bizmutu. „Gazeta Farmaceutyczna”. 4/2009. s. 36–38. [dostęp 2017-09-12]. 
  14. a b Yuri Sano i inni, Oral toxicity of bismuth in rat: single and 28-day repeated administration studies, „Journal of Occupational Health”, 47 (4), 2005, s. 293–298, ISSN 1341-9145, PMID16096353 [dostęp 2018-06-13].

Bibliografia

  • Mały słownik chemiczny. Jerzy Chodkowski (red.). Wyd. V. Warszawa: Wiedza Powszechna, 1976.
  • Encyklopedia techniki CHEMIA. Warszawa: WNT, 1965.
  • Adam Bielański: Chemia ogólna i nieorganiczna. Warszawa: PWN, 1981, s. 414, 427, 439. ISBN 83-01-02626-X.
  • Philip John Durrant, Bryl Durrant: Zarys współczesnej chemii nieorganicznej. Warszawa: PWN, 1965, s. 875–881.

Media użyte na tej stronie

NFPA 704.svg
The "fire diamond" as defined by NFPA 704. It is a blank template, so as to facilitate populating it using CSS.
Bi-crystal.jpg
Autor: Alchemist-hp (www.pse-mendelejew.de) + Richard Bartz with focus stack., Licencja: CC BY-SA 3.0
Syntetyczny kryształ bizmutu. Opalizacja powierzchni jest spowodowana obecnością cienkiej warstwy tlenku na powierzchni metalu.
Bismuth crystals and 1cm3 cube.jpg
Autor: Alchemist-hp (talk) (www.pse-mendelejew.de), Licencja: FAL
Syntetyczne kryształy bizmutu i oraz sześcian (1 cm3) wykonany z bizmutu o czystości 99,99 %.
Radioactive.svg
Internationally recognized symbol. Warning sign of Ionizing Radiation.
Wismut Kristall und 1cm3 Wuerfel.jpg
Autor: Alchemist-hp (talk) (www.pse-mendelejew.de), Licencja: FAL
Syntetyczny kryształ bizmutu. Opalizacja powierzchni jest spowodowana obecnością cienkiej warstwy tlenku na powierzchni metalu. Obok sześcian (1 cm3) wykonany z bizmutu o czystości 99,99%.
Bismuth-Bismuthinite-179856.jpg
(c) Rob Lavinsky, iRocks.com – CC-BY-SA-3.0
Bismuth, Bismuthinite
Locality: Huallatani Mine, Potosí Department, Bolivia (Locality at mindat.org)
Size: 7.9 x 6.2 x 4.1 cm.
From the world’s richest deposit of bismuth, this extremely heavy specimen has mirror bright, metallic silver crystals of the element bismuth. Some are full crystals, I believe, parted along contact planes; although many are partial crystals or fragments, but the piece is extremely rich overall with crystals, to 2 cm in length. Excellent metallic luster. Weighs over 800 grams. There is a hint of iridescence and the faintest hint of lavender. Ex. Martin Zinn Collection.
GHS-pictogram-flamme.svg
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for flammable substances
Bismuth spectrum visible.png
Autor: McZusatz (talk), Licencja: CC0
Bismuth spectrum; 400 nm - 700 nm