Efekt Ramana

Efekt Ramana (zjawisko Ramana, rozpraszanie kombinacyjne, rozpraszanie ramanowskie[1]) – nieelastyczne rozpraszanie fotonów przez substancje[2]. Polega ono na tym, że przy rozproszeniu wiązki światła w widmie rozproszonym występują, obok fotonów o takiej samej energii (rozpraszanie Rayleigha) fotony (około 1 na 107) o zmienionej energii. Powoduje to powstanie w widmie, obok pasma Rayleigha o takiej samej częstotliwości jak światło padające, tak zwanych pasm stokesowskich i antystokesowskich o odpowiednio zmniejszonej i zwiększonej częstotliwości, symetrycznie położonych po obu stronach pasma Rayleigha. Są one na ogół około 1000 razy słabsze od pasma Rayleigha, a ich liczba i położenie zależy od budowy cząsteczek rozpraszających.

Największe zastosowanie w praktyce ma oscylacyjny efekt Ramana, gdzie odległość pasm stokesowkich i antystokesowskich od pasma Rayleigha (w skali częstotliwości) jest równa częstotliwości drgań normalnych cząsteczek substancji, na której zachodzi rozproszenie. Można również zaobserwować (jedynie w fazie gazowej) rotacyjny efekt Ramana, w którym odległość pasm stokesowkich i antystokesowskich od pasma Rayleigha odpowiada częstotliwości obrotów cząsteczki.

Historia odkrycia

Pierwszeństwo odkrycia zjawiska Ramana jest sprawą kontrowersyjną. Przewidziane zostało teoretycznie już w 1922 roku. Pomiar eksperymentalny został opisany po raz pierwszy w 1928 roku przez Chandrasekharę Ramana i zjawisko zostało nazwane na jego cześć. Za badanie rozpraszania światła Raman otrzymał w 1930 roku nagrodę Nobla. Najprawdopodobniej jednak jako pierwsi zarejestrowali niesprężyste rozproszenie światła radzieccy fizycy Leonid Mandelstam i Grigorij Landsberg.

Mechanizm zjawiska

Diagram energetyczny z zaznaczonymi kwantowymi poziomami energetycznymi cząsteczki biorącymi udział w rozproszeniu Ramana. Grubość linii odpowiada w przybliżeniu prawdopodobieństwu zajścia zjawiska. Przejście A i E odpowiada widmu w podczerwieni lub jest bezpromieniste.

Rozpraszanie Rayleigha (czyli rozpraszanie elastyczne[2]) opisać można jako anihilację jednego fotonu pod wpływem oddziaływania z cząsteczką (atomem, kryształem) i natychmiastową kreację drugiego fotonu, o takiej samej energii. W wyniku takiego oddziaływania cząsteczka ani nie traci energii, ani jej nie zyskuje. Zdarza się jednak, że kreowany foton ma mniejszą energię niż padający, a różnica energii zostaje zużyta na wzbudzenie drgań lub obrotów cząsteczki – rejestruje się wtedy światło rozproszone o zmniejszonej częstotliwości, pasmo stokesowskie. Kreowany foton może mieć również większą energię niż padający, co wiąże się z deekscytacją cząsteczki, która przekazuje swój nadmiar energii (oscylacyjnej lub rotacyjnej) kreowanemu fotonowi – rejestruje się wtedy światło rozproszone o zwiększonej częstotliwości, pasmo antystokesowskie.

Oscylacyjny efekt Ramana

Najczęściej rejestruje się oscylacyjny efekt Ramana, gdzie w cząsteczkach substancji, na której zachodzi rozproszenie, wzbudzane są lub wygaszane drgania, czyli różnica energii fotonu padającego i rozproszonego odpowiada różnicy energii poziomów oscylacyjnych cząsteczki (patrz rysunek powyżej). Ponieważ z rozkładu Boltzmanna wynika, że bardziej obsadzony jest oscylacyjny poziom podstawowy niż wzbudzony, znacznie silniejsze są pasma stokesowskie niż antystokesowskie.

Warunkiem pojawienia się oscylacyjnego pasma ramanowskiego jest zmiana polaryzowalności cząsteczki w czasie drgania normalnego w taki sposób, że nie ma ona ekstremum (minimum bądź maksimum) w położeniu równowagi (czyli że pochodna polaryzowalności po współrzędnej normalnej nie jest zero w położeniu równowagi ). Pasmo jest tym większe, im większe są zmiany polaryzowalności podczas drgania.

Rotacyjny efekt Ramana

W przypadku rotacyjnego efektu Ramana różnica energii fotonu padającego i rozproszonego odpowiada różnicy energii poziomów rotacyjnych cząsteczki. W przeciwieństwie do absorpcyjnych przejść rotacyjnych rejestrowanych w spektroskopii mikrofalowej[a], liczba kwantowa rotacji J zmienia się o +2 (pasma stokesowskie) lub -2 (pasma antystokesowskie) (dla cząsteczek wieloatomowych możliwe są też zmiany o +1 lub -1, patrz widmo rotacyjne).

Warunkiem pojawienia się rotacyjnego pasma ramanowskiego jest anizotropowość tensora polaryzowalności. Rotacyjne widmo Ramana mają zatem wszystkie cząsteczki poza tymi o symetrii tetraedru (jak np. metan), oktaedru (jak np. sześciofluorek siarki) lub ikosaedru (jak np. fuleren C60).

Zastosowanie

Efekt Ramana wykorzystuje się w analizie materiałowej i spektroskopii. Stosunek intensywności pasm stokesowskich i antystokesowskich może posłużyć do wyznaczenia temperatury obiektu rozpraszającego.

W szczególnych warunkach, obserwuje się:

Zobacz też

Uwagi

  1. Gdzie liczba kwantowa rotacji J zmienia się maksymalnie o 1.

Przypisy

  1. Ramana zjawisko, [w:] Encyklopedia PWN [online] [dostęp 2021-07-23].
  2. a b Efekt Ramana i widma ramanowskie, [w:] Krzysztof Pigoń, Zdzisław Ruziewicz, Chemia fizyczna, Warszawa: Wydawnictwo Naukowe PWN, 1980, s. 701, ISBN 83-01-01586-1.

Media użyte na tej stronie

Raman scattering.svg
Raman and Rayleigh scattering processes taking place via virtual states (denoted by dash lines). On the left, absorption and emission between real energy levels.