Geometria nieeuklidesowa

proste równoległe w różnych geometriach.
Płaszczyzna, punkt, prosta, kąt w ujęciu geometrii euklidesowej, sferycznej, hiperbolicznej

Geometria nieeuklidesowageometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa.

Historia

Aż do początku XIX w. panowało przekonanie, że geometria euklidesowa jest jedyną z możliwych, mimo że istniała już geometria rzutowa (wykorzystywana w malarstwie) oraz sferyczna (wykorzystywana w nawigacji morskiej i astronomii)[1]. Geometria nieeuklidesowa ma swoje początki w badaniach Carla F. Gaussa[2], Johanna Lamberta, Giovanni Saccheriego oraz Adrien-Marie Legendre[3]. Decydująca jednak była praca Mikołaja Iwanowicza Łobaczewskiego O podstawach geometrii, wydana w 1829 w Kazaniu[4][5].

Wielki wkład do rozwoju tych geometrii wnieśli także: János Bolyai, Bernhard Riemann oraz David Hilbert.

Przykłady geometrii nieeuklidesowych

Modele geometrii

Parkietaż nieeuklidesowej powierzchni Poincaré'a za pomocą trójkątów[6], który był inspiracją dla prac Eschera
Modele Kleina (po lewej) oraz Poincaré'ego (po prawej)[7]

Model geometrii nieeuklidesowej Łobaczewskiego zaproponował H. Poincaré. Bazując na graficznej reprezentacji tego modelu Maurits Cornelis Escher wykonał prace "Granice Koła", pochodzące z lat 1958-1960. Drugim modelem geometrii nieeuklidesowej był ten, który zaproponował Felix Klein, w którym jednak kąty nie odpowiadały geometrii Łobaczewskiego. Oba modele bazowały na kole bez brzegów, czyli rozmaitości dwuwymiarowej. W modelu Poincaré'a widać wyraźnie, że piąty postulat Euklidesa nie jest spełniony[8].

Na niemal dowolnej powierzchni można rozważać geometrie, zazwyczaj będzie ona nieeuklidesowa, na co zwrócił uwagę Bernhard Riemann, bazujący na pracach Gaussa, który wprowadził pojęcie krzywizny powierzchni. Krzywizna ta definiuje czy geometria jest lokalnie paraboliczną (podobna do euklidesowej, gdzie krzywizna jest równa zero), eliptyczna (większa od zera) czy hiperboliczna (mniejsza od zera) w stylu Bolyai-Łobaczewskiego[9].

Zobacz też

Przypisy

Bibliografia

Linki zewnętrzne

Media użyte na tej stronie

Hyperbolic domains 642.png

Hyperbolic tiling of (p q r) fundamental domain triangles, in Poincaré Disc projection, colored red for odd reflections. View centered on p, or labeled b,c for q,r points.

Noneuclid.svg
Autor: Oryginał: JoshuabowmanVector: Pbroks13, Licencja: CC-BY-SA-3.0
Differences between Euclidean and non-Euclidean geometries.
Types of geometry.svg
Autor: , Licencja: GFDL-1.1,1.2,1.3
Płaszczyzna, punkt, prosta, kąt w ujęciu geometrii euklidesowej, sferycznej, hiperbolicznej
Non-euclidean-geometry-model.svg
Autor: Jakub T. Jankiewicz, Licencja: CC0
Modele geometrii nieeuklidesowej zaproponowane przez Felixa Kleina (lewy) oraz Henri Poincaré'a (prawy) w której kąty odpowiadają geometrii Łobaczewskiego. Na podstawie książki Krzysztof Ciesielski, Zdzisław Pogoda: Bezmiar Matematycznej Wyobraźni, Warszawa 2005.