Geometria różniczkowa

Geometria różniczkowa – dziedzina geometrii, badająca krzywe, powierzchnie i ich wielowymiarowe uogólnienia zwane hiperpowierzchniami i rozmaitościami, opierając się na geometrii analitycznej, szeroko stosując metody analizy matematycznej, głównie rachunku różniczkowego[1].

Po powstaniu pierwszych elementów geometrii różniczkowej w pracach Leibniza, Newtona i starszych braci Bernoullich, XVIII w. był dla tej gałęzi geometrii okresem nowego, szerokiego rozwoju. Problem poszukiwania trajektorii postawił Jan Bernoulli (1697), który właśnie wprowadził ten termin (1698). Wiele artykułów poświęconych było badaniu krzywych, dla których dane były w jakiejś zależności między ich promieniem krzywizny, a innymi wielkościami związanymi z krzywą – promieniem wodzącym, odcinkiem normalnej itd.

Przypisy

  1. Geometria różniczkowa, [w:] Encyklopedia PWN [online] [dostęp 2021-07-30].