Graf planarny

Niniejszy artykuł jest częścią cyklu teoria grafów.




Najważniejsze pojęcia
graf
drzewo
podgraf
cykl
klika
stopień wierzchołka
stopień grafu
dopełnienie grafu
obwód grafu
pokrycie wierzchołkowe
liczba chromatyczna
indeks chromatyczny
izomorfizm grafów
homeomorfizm grafów


Wybrane klasy grafów
graf pełny
graf spójny
drzewo
graf dwudzielny
graf regularny
graf eulerowski
graf hamiltonowski
graf planarny


Algorytmy grafowe
A*
Bellmana-Forda
Dijkstry
Fleury'ego
Floyda-Warshalla
Johnsona
Kruskala
Prima
przeszukiwanie grafu
wszerz
w głąb
najbliższego sąsiada


Zagadnienia przedstawiane jako problemy grafowe
problem komiwojażera
problem chińskiego listonosza
problem marszrutyzacji
problem kojarzenia małżeństw


Inne zagadnienia
kod Graya
diagram Hassego
kod Prüfera


Przykład grafu planarnego: graf Goldnera-Harary’ego(ang.)

Graf planarnygraf, który można narysować na płaszczyźnie (i każdej powierzchni genusu 0) tak, by krzywe obrazujące krawędzie grafu nie przecinały się ze sobą. Odwzorowanie grafu planarnego na płaszczyznę o tej własności nazywane jest jego rysunkiem płaskim. Graf planarny o zbiorze wierzchołków i krawędzi zdefiniowanym poprzez rysunek płaski nazywany jest grafem płaskim[1].

Kryterium Kuratowskiego

Dwa minimalne grafy, które nie są planarne, to K5 i K3,3. Twierdzenie Kuratowskiego (1930) mówi, że graf skończony jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu homeomorficznego z grafem K5 ani z grafem K3,3.

Complete graph K5.svg Complete bipartite graph K3,3.svg

Twierdzenie Eulera

Dowolny rysunek płaski grafu planarnego wyznacza spójne obszary płaszczyzny zwane ścianami. Dokładnie jeden z tych obszarów, zwany ścianą zewnętrzną, jest nieograniczony.

Zgodnie z wzorem Eulera, jeżeli oraz jest grafem spójnym i planarnym, to gdzie – zbiór wierzchołków, – zbiór krawędzi, – zbiór ścian dowolnego rysunku płaskiego grafu

Wnioski ze wzoru Eulera

  • Jeżeli G jest planarny i posiada składowych spójnych, to
  • Jeżeli G jest planarny i to
  • Jeżeli G jest planarny, to wierzchołek o najmniejszym stopniu jest stopnia co najwyżej 5.

Zgodnie z twierdzeniem o czterech barwach, graf planarny daje się zawsze pokolorować przy użyciu co najwyżej czterech kolorów.

Zobacz też

  • domki i studnie

Przypisy

  1. Reinhard Diestel: Graph Theory. Nowy Jork: 2000, s. 67, 80. ISBN 0-387-95014-1.

Media użyte na tej stronie