Granice dolna i górna

Ilustracja granicy górnej oraz dolnej. Ciąg zaznaczono kolorem niebieskim. Dwie czerwone krzywe dążą do granicy górnej i dolnej ciągu oznaczonych linią czarną kropkowaną.

Granica dolna (także łac. limes inferior) oraz granica górna (również łac. limes superior) – odpowiednio kres dolny i górny granic wszystkich podciągów danego ciągu.

Każdy ciąg ma granice dolną i górną. Jeżeli dany ciąg ma granicę, to granice dolna oraz górna są równe. Zachodzi także twierdzenie odwrotne: jeśli ciąg posiada granicę dolną oraz górną i są one równe, to posiada także granicę równą wspólnej wartości granic dolnej i górnej (na podstawie twierdzenia o trzech ciągach).

Definicja

Granica dolna i granica górna ciągu definiowane są odpowiednio wzorami

W pierwszej definicji druga z równości wynika z faktu, że ciąg jest niemalejący, więc jego granicą jest jego supremum. Analogicznie, druga z równości w drugiej definicji wynika z faktu, że ciąg ciąg jest nierosnący, więc jego granicą jest jego infimum.

Należy mieć na uwadze, że oznaczenia granic dolnej i górnej stanowią jedną całość i nie składają się z oddzielnych oznaczeń oraz czy co widać w powyższych napisach, gdzie rozpościera się równo pod całym napisem lub a nie jego pewną częścią. Korzysta się również z symboli na oznaczenie granicy dolnej oraz na oznaczenie granicy górnej.

Przykłady

Najprostszym przykładem jest

Istnieją ciągi, których granica dolna jest różna od granicy górnej, są one rozbieżne:

ale

Podobnie

ale

Własności

Dla dowolnych ciągów prawdziwe są następujące nierówności:

Zobacz też

Bibliografia

  • Liliana Janicka: Wstęp do analizy matematycznej. Wrocław: Oficyna Wydawnicza „GiS”, 2004, s. 74–77. ISBN 83-89020-36-X.

Media użyte na tej stronie

Lim sup example 5.png
Autor: Eigenjohnson, Licencja: CC BY-SA 3.0
bigger fonts for the depiction of lim sup/inf