Hipocykloida

Hipocykloidakrzywa płaska, jaką zakreśla ustalony punkt okręgu toczącego się bez poślizgu wewnątrz okręgu o większym promieniu. Krzywa ta jest szczególnym przypadkiem hipotrochoidy.

Kształt hipocykloidy (liczba ostrzy) zależy od ilorazu promieni okręgów, nieruchomego do toczącego się.

Opis matematyczny

Hipocykloidę najłatwiej opisać równaniami parametrycznymi[1]:

Przykłady

Asteroida jako ewoluta elipsy

Poniższe rysunki pokazują kilka hipocykloid dla różnych wartości ilorazów

  • hipocykloida (zwana też deltoidą) – powstawanie i krzywa statycznie:
Hipocykloida2.svg
  • hipocykloida (zwana też asteroidą[1]) – powstawanie i krzywa statycznie:
Asteroida2.svg
  • dla hipocykloida redukuje się do średnicy dużego okręgu – fakt ten jest znany jako twierdzenie Kopernika i może być wykorzystany do zamiany ruchu obrotowego na posuwisto-zwrotny:

Jeżeli stosunek jest liczbą niewymierną, hipocykloida jest linią otwartą, a zbiór jej wierzchołków jest gęstym podzbiorem okręgu. Poniższe rysunki przedstawiają taką sytuację z tym, że parametr przebiega skończony przedział, [−10, 100] oraz [−10, 1000]:

Hypocycloid 100.png Hypocycloid 1000.png

Zobacz też

Przypisy

  1. a b hipocykloida, [w:] Encyklopedia PWN [online] [dostęp 2022-06-20]. Błąd w przypisach: Nieprawidłowy znacznik <ref>; nazwę „epwn” zdefiniowano więcej niż raz z różną zawartością
    BŁĄD PRZYPISÓW

Linki zewnętrzne

  • Eric W. Weisstein, Hypocycloid, [w:] MathWorld [online], Wolfram Research [dostęp 2020-12-12] (ang.).

Media użyte na tej stronie

Normal lines to the ellipse.svg
Autor: Adam majewski, Licencja: CC BY-SA 4.0
Normal lines to the ellipse.[1] The evolute of the ellipse ( = Stretched astroid) can be seen. The streched astroid itself is not not drawn: we see it as the locus of points where the lines are especially close to each other. Stretched = "squashed" astroid = dilated in one direction only= the Lamé curve. Is it generalization of the astroid curve)
Hypocycloid simple animation.gif
(c) WojciechSwiderski, CC-BY-SA-3.0
animacja powstawania hipocykloidy prostej
Hypocycloid 1000.png
hipocykloida "niewymierna" 2
Hypocycloid animation.gif
(c) WojciechSwiderski, CC-BY-SA-3.0
animacja powstawania hipocykloidy - trzy
Hypocycloid 100.png
Hipocykloida "niewymierna"
Hipocykloida2.svg
deltoida (hipocykloida R/r=3)
Asteroida2.svg
asteroida (hipocykloida R/r=4)