Hipoteza Kurepy

Hipoteza Kurepy, KH (od ang. Kurepa hypothesis) – zdanie teorii mnogości postulujące istnienie obiektów nazywanych drzewami Kurepy. Jest ono niezależne od standardowych aksjomatów ZFC (nie można go udowodnić ani obalić na gruncie tych aksjomatów).

Definicje

Drzewo to częściowy porządek o własności: dla każdego zbiór jest dobrze uporządkowany (przez relację ). Niech będzie drzewem. Wysokością elementu w drzewie nazywa się typ porządkowy zbioru Dla każdej liczby porządkowej definiuje się -ty poziom drzewa jako zbiór

Drzewo spełniające

  • dla każdej przeliczalnej liczby ale

oraz

nazywa się drzewem

Jeżeli jest drzewem to łańcuch nazywa się gałęzią w drzewie jeśli

Drzewo Kurepy to drzewo w którym istnieją przynajmniej gałęzie Hipotezą Kurepy nazywa się zdanie stwierdzające, że „istnieje drzewo Kurepy”.

Własności

  • Wzmocnienie diamentu Jensena implikuje KH. Zatem hipoteza Kurepy jest spełniona w uniwersum konstruowalnym L.
  • Jeśli istnieje liczba nieosiągalna, to pewne pojęcie forsingu forsuje ¬KH (negacja KH). Zatem jeśli niesprzeczna jest teoria ZFC + „istnieje liczba nieosiągalna”, to niesprzeczne jest również ZFC + ¬KH.
  • Powyżej liczba nieosiągalna jest niezbędna, gdyż ¬KH pociąga nieosiągalność w L.

Zobacz też