Hipoteza liczb pierwszych bliźniaczych
Hipoteza liczb pierwszych bliźniaczych – problemem teorii liczb, związany z liczbami pierwszymi. Jako pierwszy prawdopodobnie Euklides około 300 roku p.n.e.[1] postawił hipotezę, że:
- Jest nieskończenie wiele liczb pierwszych takich że jest również liczbą pierwszą.
Taka para liczb pierwszych jest nazywana liczbami pierwszymi bliźniaczymi. Wielu matematyków wierzy w prawdziwość tej hipotezy, chociaż bazuje ona tylko na dowodach numerycznych i heurystycznym rozumowaniu wynikającym z prawdopodobieństwa rozmieszczenia liczb pierwszych według modelu Craméra.
W 1849 Alphonse de Polignac sformułował bardziej ogólną hipotezę mówiącą, że:
- Dla każdej liczby naturalnej jest nieskończenie wiele par liczb pierwszych i takich że
W wypadku gdy jest to hipoteza liczb pierwszych bliźniaczych.
Uogólniona teoria liczb pierwszych bliźniaczych została sformułowana przez G.H. Hardy’ego i Johna Littlewooda. Określiła ona stałą liczb pierwszych bliźniaczych –
Największe znane liczby pierwsze bliźniacze (wrzesień 2016) to: składające się z 388342 cyfr[2].
Przypisy
- ↑ Twin Primes Conjecture: ‘Weak’ Version Of Famed Math Problem Possibly Proven | HuffPost, www.huffingtonpost.com [dostęp 2017-11-23] (ang.).
- ↑ Chris K. Caldwell: Twin Primes (ang.). [dostęp 2016-11-29].