Histamina

Histamina
Ogólne informacje
Wzór sumaryczny

C5H9N3

Masa molowa

111,15 g/mol

Wygląd

białe igły (po krystalizacji z chloroformu)[1]

Identyfikacja
Numer CAS

51-45-6
56-92-8 (dichlorowodorek)
23297-93-0 (difosforan)

PubChem

774

Jeżeli nie podano inaczej, dane dotyczą
stanu standardowego (25 °C, 1000 hPa)
Klasyfikacja medyczna
ATC

L03AX14, V04CG03

Histamina (β-imidazolyloetyloamina) – organiczny związek chemiczny, heterocykliczna amina będąca pochodną imidazolu zawierającą boczny łańcuch etyloaminowy. Występuje naturalnie w organizmie ludzkim, pełni funkcję mediatora procesów zapalnych, mediatora odczynu alergicznego, neuroprzekaźnika oraz pobudza wydzielanie kwasu żołądkowego.

Została otrzymana po raz pierwszy na drodze chemicznej przez A. Windausa i W. Vogta w roku 1907[5][6][7]. W roku 1910 Dale i Laidlaw udowodnili znaczenie histaminy w patomechanizmie anafilaksji, a w roku 1937 Bovet i Staub opublikowali pierwsze dane na temat skuteczności blokowania receptorów histaminowych[5].

Powstawanie i występowanie

Histamina jest hormonem tkankowym zaliczanym do neurohormonów, wytwarzanym z aminokwasu histydyny. W organizmie ludzkim powstaje w wyniku dekarboksylacji (w obecności fosforanu pirydoksalu) histydyny. Jej produkcja zachodzi w wielu miejscach. Najwyższe stężenia obserwuje się w płucach, skórze, błonie śluzowej nosa i żołądka.

Dekarboksylacja histydyny do histaminy

Jest magazynowana w formie nieczynnej w ziarnistościach bazofili (granulocytach zasadochłonnych) i mastocytów (komórek tucznych znajdujących się w tkance łącznej, przede wszystkim w okolicy naczyń krwionośnych i limfatycznych oraz nerwów), skąd może być uwalniana w czasie reakcji zapalnej. W żołądku występuje w histaminocytach, a w ośrodkowym układzie nerwowym w neuronach histaminergicznych.

Aminy biogenne (w tym histamina) występują w wielu artykułach żywnościowych, przede wszystkim wytwarzanych i dojrzewających przy udziale procesów fermentacyjnych, także nieświeżych, lub silnie skażonych mikrobiologicznie. Prekursorami tych amin są aminokwasy uwalniane z białek na drodze hydrolizy.

Histamina występuje głównie w surowcach rybnych, a spożycie ich dużej ilości wiąże się z zatruciem pokarmowym. Zawartość histaminy w surowcach i przetworach rybnych zależy przede wszystkim od ilości wolnej histydyny w mięśniach, obecności aktywatorów i inhibitorów dekarboksylaz, a także od rodzaju i wielkości populacji bakteryjnej.

Rola w organizmie

W wyniku reakcji antygenu z przeciwciałami we krwi człowieka lub pod wpływem czynników niszczących błonę komórki tucznej magazynującej histaminę (np. wskutek zimna lub ucisku, a także pod wpływem zmian pH, składu jonów i leków pobudzających aktywność histaminy) dochodzi do uwalniania histaminy i rozwoju reakcji zapalnej. Wyzwolona z tkanek histamina wiąże się ze swoistymi receptorami, a następnie ulega przemianie do nieczynnych produktów. Po degranulacji komórek tucznych histamina przenika do naczyń krwionośnych, a jej poziom we krwi rośnie między 2,5 a 5 minutami i wraca do poziomu wyjściowego po 15-30 minutach[8]. Działanie histaminy opiera się na pobudzaniu receptorów H1, H2, H3 i H4

Efektem pobudzenia receptorów H1 jest:

  • zwiększenie przepuszczalności naczyń żylnych zawłośniczkowych, w wyniku czego dochodzi do powstania obrzęków, bladych bąbli, krostek i innych zmian skórnych
  • rozszerzenie naczyń krwionośnych, w wyniku czego pojawia się zaczerwienienie, może też wystąpić spadek ciśnienia krwi
  • skurcz mięśni gładkich oskrzeli charakterystyczny w astmie
  • skurcz macicy grożący poronieniem u ciężarnych
  • skurcz mięśni przewodu pokarmowego.

Histamina wydzielona w dużych ilościach do tkanki podskórnej drażni zakończenia nerwowe, powodując świąd i ból.

Efektem pobudzenia receptorów H2 są:

  • przyspieszenie tętna, zwiększenie wydajności serca
  • stymulowanie wydzielanie soków trawiennych w żołądku.

Receptory H3 znajdują się w OUN, w podwzgórzu. Histamina odgrywa tam rolę neuroprzekaźnika. Receptory H3 modulują syntezę histaminy i jej uwalnianie w ośrodkowym układzie nerwowym oraz mogą obniżać jej uwalnianie z komórek tucznych i hamować uwalnianie prozapalnych tachykinin z włókien C, bez otoczki mielinowej w drogach oddechowych. Efekty pobudzenia receptora H4 wymagają dalszych badań[8].

Udział w reakcji alergicznej

Histamina uczestniczy w zapaleniu alergicznym jako mediator prozapalny nie tylko wczesnej i późnej fazy odczynu, ale prawdopodobnie wpływa także na odległe następstwa choroby w postaci przebudowy dróg oddechowych. W alergicznej reakcji natychmiastowej centralną rolę odgrywa proces aktywacji receptora H1. Kontakt z alergenem powoduje wylew histaminy z ziarnistości niektórych ludzkich komórek odpornościowych np. mastocytów i silne podrażnienie skóry, błony śluzowej jelit, nosa, oskrzeli i płuc. Odpowiednio do tych lokalizacji wywołuje to: pokrzywkę skórną, biegunkę, katar sienny, astmę, a u niektórych – wstrząs anafilaktyczny (np. wskutek ukąszenia osy lub pszczoły). Histamina odpowiada za wystąpienie objawów[9]:

  • alergii wziewnej i skórnej – wywołuje zaczerwienienie, lokalne ocieplenie, nabrzmienie i bolesny stan zapalny. Rozszerzając małe naczynia krwionośne i zwiększając ich przepuszczalność, powoduje lokalne wysięki osocza i obrzęki (nosa, gardła, oskrzeli, a także obrzęk naczynioruchowy i obecność bąbli przy pokrzywce). Drażnienie przez histaminę zakończeń nerwów czuciowych powoduje świąd i doznania bólowe.
  • astmy – jej nagły wylew grozi obrzękiem krtani, tchawicy, a w najostrzejszych przypadkach obrzękiem płuc, co odcina dopływ powietrza. Zmiany te powodują utrudnienia w oddychaniu, które są głównym objawem dychawicy oskrzelowej.
  • alergii pokarmowej – jej obecność w jelitach powoduje skurcz mięśni gładkich i wzmożone wydzielania soków trawiennych. Podrażniona błona śluzowa jelita cienkiego reaguje stanem zapalnym wywołującym biegunkę.
  • anafilaksji – po przekroczeniu pewnego progu ilościowego histamina przedostaje się z tkanek do krążenia i może wywołać niebezpieczne reakcje ogólnoustrojowe, objawiające się nagłym spadkiem ciśnienia krwi i przyspieszeniem akcji serca, co może grozić zgonem
  • przewlekłej alergii (np. całoroczny alergiczny nieżyt nosa lub przewlekła pokrzywka idiopatyczna) – stale uwalniana histamina drastycznie zwiększa przepuszczalność ścian naczyń krwionośnych wskutek ciągłego drażnienia tzw. receptorów histaminowych H1. Przewlekły stan zapalny i drażniące działanie histaminy oraz innych mediatorów powodują stopniową degenerację okolicznych tkanek.

Histamina zmienia też właściwości błony komórkowej, wskutek czego do wnętrza komórki dostaje się zbyt dużo jonów wapnia i sodu, co może wywoływać nadmierne skurcze mięśni oskrzeli i stanów zagrożenia życia.

Zastosowanie w lecznictwie

Histamina jest stosowana w celach diagnostycznych, jako dodatnia próba kontrolna w badaniach chorób alergicznych. Bywa też stosowana w maściach jako środek powodujący zaczerwienienie i rozgrzanie skóry.

Znacznie szersze zastosowanie mają leki przeciwhistaminowe, wypierające histaminę z połączeń z receptorami. Leki antyhistaminowe mogą pomóc w zapobieganiu i leczeniu objawów alergii, a także pospolitego przeziębienia. Mogą również być użyte w leczeniu lęku i bezsenności. Są one odwracalnymi i konkurencyjnymi blokerami receptora H1. Nie wpływają na receptor H2. Wyróżnia się wśród nich:

  • leki przeciwhistaminowe I generacji – nie są selektywne, działają także na inne receptory. Łatwo przenikają do ośrodkowego układu nerwowego, przez co mogą powodować senność, otępienie i zahamowanie odruchów. Wykazują działanie uspokajające, przeciwwymiotne, a niektóre z nich działają miejscowo znieczulająco. Skutecznie zwalczają miejscowe objawy alergiczne (np. bąble pokrzywkowe, obrzęki i świąd). W zmianach alergicznych ze strony błon śluzowych (jak alergiczny nieżyt nosa i zatok przynosowych, eozynofilowe zapalenie przełyku czy astma oskrzelowa) nie działają lub działają słabo.
  • leki przeciwhistaminowe II generacji – selektywne blokery receptorów H1. Nie działają blokująco na receptory cholinergiczne i inne receptory centralnego i obwodowego układu nerwowego. Nie powodują też sedacji i innych działań niepożądanych właściwych dla leków I generacji. Najnowsze leki z tej grupy są metabolitami leków I i II generacji. Wyjątkiem jest bilastyna, która stanowi odrębną cząsteczkę. Substancję stosuje się w leczeniu objawowego alergicznego nieżytu nosa (całorocznego i sezonowego) oraz spojówek i pokrzywki. Leki przeciwhistaminowe najnowszej generacji wyróżnia wysoka selektywność receptorowa i wysokie powinowactwo do receptora H1, a także długi biologiczny okres półtrwania (u bilastyny: 10–14 godzin) oraz długi czas działania (do 24-26 godzin) przy regularnym podawaniu leku[10].

Zatrucia

Histamina zawarta w żywności nie ulega rozkładowi w procesie obróbki termicznej. Spożyta z pokarmem jest w dużym stopniu wiązana i dezaktywowana przez diaminooksydazę w przewodzie pokarmowym, co obniża jej toksyczność. W przypadku niewystarczającej aktywności diaminooksydazy, spowodowanej na przykład predyspozycjami genetycznymi, zażywaniem leków lub spożytym alkoholem, histamina może powodować efekty toksyczne[11].

Zatrucie spowodowane histaminą w dużych ilościach wywołuje gwałtowne rozszerzenie naczyń krwionośnych i spadek ciśnienia krwi. W ilości od 200 do 1000 ppm powoduje wymioty, bóle głowy, mdłości, wysoką gorączkę, wysypki skórne, nadmierne pocenie się, trudności w oddychaniu. W przypadku obecności histaminy w mięsie w ilości powyżej 1000 ppm wywołane zatrucia pokarmowe mogą zakończyć się śmiercią. Jej toksyczność zależy nie tylko od dawki, ale również od indywidualnych predyspozycji organizmu, to znaczy funkcjonowania mechanizmu zatrzymywania i detoksykacji oraz od obecności w pokarmie innych biologicznie czynnych amin.

Przypisy

  1. a b c d CRC Handbook of Chemistry and Physics, William M. Haynes (red.), wyd. 95, Boca Raton: CRC Press, 2014, s. 3-302, ISBN 978-1-4822-0867-2 (ang.).
  2. a b c Histamine, [w:] ChemIDplus [online], United States National Library of Medicine [dostęp 2012-12-16] (ang.).
  3. Podręczny słownik chemiczny, Romuald Hassa (red.), Janusz Mrzigod (red.), Janusz Nowakowski (red.), Katowice: Videograf II, 2004, s. 163, ISBN 83-7183-240-0.
  4. Histamina (nr H7125) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Polski.
  5. a b D.K. Cavanah, T.B. Casale: Histamine. W: The Mast Cell in Health and Disease. M.A. Kaliner, D.D. Metcalfe (red.). T. 62. Marcel Dekker, Inc., 1993, s. 321–342, seria: Lung Biology in Health and Desease. ISBN 978-0-8247-8732-5.
  6. Hirschowitz, B I. H-2 Histamine Receptors. „Annual Review of Pharmacology and Toxicology”. 19 (1), s. 203-244, 1979. DOI: 10.1146/annurev.pa.19.040179.001223. PMID: 36826. 
  7. Windaus, A., Vogt, W.. Synthese des Imidazolyl-äthylamins. „Berichte der deutschen chemischen Gesellschaft”. 40 (3), s. 3691-3695, 1907. DOI: 10.1002/cber.190704003164. 
  8. a b A. Lewandowska-Polak, M.L. Kowalski. Leki antyhistaminowe w chorobach alergicznych. „Przegląd Alergologiczny”. 1 (2), s. 42–47, 2004. 
  9. E. Ozga Michalski, A. Danysz: Histamina i alergia. Portal Farmaceutyczno-Medyczny. [dostęp 2014-09-23]. [zarchiwizowane z tego adresu (2014-07-22)].
  10. Marek Jutel, Katarzyna Solarewicz-Madejek. Bilastyna – nowy lek przeciwhistaminowy. „Alergia”, s. 37–39, 3/2011. 
  11. Na czym polega nietolerancja histaminy? - Zdrowegeny.pl, zdrowegeny.pl, 16 lipca 2019 [dostęp 2019-10-09] (pol.).

Bibliografia

  • Kompendium farmakologii. Janiec Waldemar (red.). Wyd. II. Warszawa: Wydawnictwo Lekarskie PZWL, 2006. ISBN 83-200-3589-9.

Linki zewnętrzne

Star of life.svg Przeczytaj ostrzeżenie dotyczące informacji medycznych i pokrewnych zamieszczonych w Wikipedii.

Media użyte na tej stronie

GHS-pictogram-skull.svg
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for toxic substances
GHS-pictogram-silhouete.svg
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for substances hazardous to human health.
Star of life.svg

The Star of Life, medical symbol used on some ambulances.

Star of Life was designed/created by a National Highway Traffic Safety Administration (US Gov) employee and is thus in the public domain.
Histidine decarboxylase.svg
Decarboxylation of histidine by histidine decarboxylase
Histamine3d.png
3d molecular spacefill of Histamine
GHS-pictogram-silhouette.svg
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for substances hazardous to human health.
Histamin - Histamine.svg
Structure of histamine