Interferony

Model struktury 3D interferonu α

Interferony (IFNs) – ogólna nazwa grupy białek wytwarzanych i uwalnianych przez komórki ciała jako odpowiedź na obecność patogenów (np. wirusy, bakterie, pasożyty, jak również komórki nowotworowe) wewnątrz organizmu. Interferony zapewniają komunikację pomiędzy komórkami ciała poprzez uruchomienie mechanizmów obronnych układu immunologicznego w celu zwalczenia patogenów.

Interferony należą do dużej grupy cytokin należących do glikoprotein. Nazwę swoją zawdzięczają one możliwości ingerencji (ang. interfere) w proces replikacji wirusów wewnątrz komórek organizmu. Białka te mają też inne funkcje:

  • aktywują komórki układu immunologicznego (komórki NK oraz makrofagi),
  • zwiększają szybkość rozpoznania infekcji poprzez regulowanie prezentacji antygenu limfocytom T,
  • wzmacniają odporność zdrowych komórek na zainfekowanie wirusem,
  • hamują namnażanie się wirusów poprzez hamowanie syntezy ich białek.

Niektóre objawy chorobowe, jak bóle mięśni czy gorączka, są spowodowane produkcją interferonów podczas infekcji.

Dotychczas odkryto 10 rodzajów interferonu występujących u ssaków, z czego 7 z nich u ludzi. Interferony dzieli się na trzy grupy: Typ I, II oraz III. Interferony należące do wszystkich grup są niezbędne do zwalczania infekcji wirusowych.

Podział interferonów

Ludzkie interferony zostały podzielone na 3 grupy w zależności od tego, na które receptory oddziałują.

  • Interferony typu I – wszystkie interferony z tej grupy działają na zespół receptorów na powierzchni komórki, zwanym receptorem IFN-α (IFNAR)[1]. Interferony z tej grupy wydzielane w ludzkim organizmie to:
  • Interferony typu II – jedynym przedstawicielem tej grupy jest:
    • IFN-γ – obok pewnych właściwości przeciwwirusowych odgrywa zasadniczą rolę jako mediator odpowiedzi odpornościowej[3].
  • Interferony typu III – działają na receptory IL10R2 (zwany również 'CRF2-4') oraz IFNLR1 (zwanym również 'CRF2-12'). Odrębność tego typu nie jest tak oczywista jak dwóch poprzednich. Na obecną chwilę typ ten nie jest ujęty w Medical Subject Headings[4].

Działanie

Wszystkie interferony mają podobne działanie: są środkami antywirusowymi oraz mogą zwalczać zmiany nowotworowe.

Kiedy umiera komórka zainfekowana wirusem litycznym, uwalniane zostają nowe kopie wirusa, które atakują zdrowe komórki znajdujące się w pobliżu. Czasem jednak zakażona komórka ostrzega sąsiednie o obecności wirusa poprzez wydzielenie interferonu. Sąsiadujące komórki w odpowiedzi na obecność interferonu produkują duże ilości enzymukinazy białkowej R (PKR). Enzym ten fosforyluje białko eIF2. Skutkuje to ograniczeniem syntezy białek wewnątrz komórki. Ponadto PKR aktywuje również inny enzym RNAzę L, który niszczy RNA wewnątrz komórki, aby zapobiec ewentualnej syntezie białek przez wirusa. W praktyce wstrzymana synteza białek wyniszcza zarówno wirusa, jak i zainfekowane komórki. Dodatkowo interferony zapoczątkowują produkcję setek innych białek odgrywających ważną rolę w walce organizmu z wirusem, zwanych ogólnie ISG (z ang. interferon-stimulated genes)[5][6]. Enzymy te hamują rozprzestrzenianie się wirusów poprzez zwiększenie aktywności białka p53, które zabija zainfekowane komórki zapoczątkowując mechanizm apoptozy, poprzez zwiększenie aktywności proteasomu oraz za pomocą MHC[7][8]. Podwyższony poziom MHC I zwiększa wykrywalność wirusowych białek przez cytotoksyczne limfocyty T oraz komórki NK, a proteasomy przyspieszają tę reakcję. Natomiast podwyższony poziom MHC II wpływa na wykrywanie wirusowych białek przez limfocyty Th, które z kolei uwalniają cytokiny (np. interleukiny lub dodatkowe ilości interferonu), co pobudza do działania inne komórki odpornościowe. Białko p53 działa również ochronnie przed niektórymi nowotworami[7].

Interferony takie jak IFN-γ pobudzają bezpośrednio komórki układu immunologicznego, jak makrofagi oraz komórki NK. Interferony mogą również spowodować reakcję zapalną języka, co skutkuje zaburzeniami smaku, a nawet całkowitą śmiercią kubków smakowych[9].

Historia

W 1957 r. dwóch naukowców Brytyjczyk Alick Isaacs i Szwajcar Jean Lindenmann prowadząc badania nad zjawiskiem interferencji wirusowej w National Institute for Medical Research w Londynie, odkryli substancję wytwarzaną przez komórki łożyska kurzych embrionów po ekspozycji na unieczynniony wirus grypy [10]. Ta substancja przeciwdziałała rozwojowi i rozprzestrzenianiu się infekcji wirusowej w organizmie przy ponownym kontakcie z wirusem. Badacze nadali temu przeciwwirusowemu czynnikowi nazwę interferon od angielskiego czasownika interfere, co znaczy „przeciwdziałać”[11].

Zobacz też

Przypisy

  1. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. „J Biol Chem”. 282 (28), s. 20053–20057, 2007. DOI: 10.1074/jbc.R700006200. PMID: 17502368. 
  2. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. „Annu Rev Immunol”. 23, s. 275–306, 2005. DOI: 10.1146/annurev.immunol.23.021704.115633. PMID: 15771572. 
  3. A. Billiau, P. Matthys. Interferon-gamma: a historical perspective. „Cytokine Growth Factor Rev”. 20 (2), s. 97-113, 2009. DOI: 10.1016/j.cytogfr.2009.02.004. PMID: 19268625. 
  4. J. Vilcek. Novel interferons. „Nat Immunol”. 4 (1), s. 8-9, 2003. DOI: 10.1038/ni0103-8. PMID: 12496969. 
  5. V Fensterl, GC Sen. Interferons and viral infections. „Biofactors”. 35 (1), s. 14–20, 2009. DOI: 10.1002/biof.6. PMID: 19319841. 
  6. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. „Journal of leukocyte biology”. 69 (6), s. 912–20, 2001. PMID: 11404376. 
  7. a b Takaoka A, Hayakawa S, Yanai H, et al.. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. „Nature”. 424 (6948), s. 516–23, 2003. DOI: 10.1038/nature01850. PMID: 12872134. 
  8. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. DNA Damage Signaling and p53-dependent Senescence after Prolonged β-Interferon Stimulation. „Mol. Biol. Cell”. 17 (4), s. 1583–92, 2006. DOI: 10.1091/mbc.E05-09-0858. PMID: 16436515. PMCID: PMC1415317. 
  9. Wang H, Zhou M, Brand J, Huang L.. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells. „Neurosci”. 27 (40), s. 10703-10713, 2007. DOI: 10.1523/JNEUROSCI.3102-07.2007. PMID: 17913904. 
  10. A. ISAACS, J. LINDENMANN. Virus interference. I. The interferon.. „Proc R Soc Lond B Biol Sci”. 147 (927), s. 258-67, Sep 1957. PMID: 13465720. 
  11. S. Pestka. The interferons: 50 years after their discovery, there is much more to learn.. „J Biol Chem”. 282 (28), s. 20047-51, Jul 2007. DOI: 10.1074/jbc.R700004200. PMID: 17502369. 

Star of life.svg Przeczytaj ostrzeżenie dotyczące informacji medycznych i pokrewnych zamieszczonych w Wikipedii.

Media użyte na tej stronie

Star of life.svg

The Star of Life, medical symbol used on some ambulances.

Star of Life was designed/created by a National Highway Traffic Safety Administration (US Gov) employee and is thus in the public domain.
1RH2 Recombinant Human Interferon-Alpha 2b-01.png
Autor: Nevit Dilmen, Licencja: CC-BY-SA-3.0
1RH2 Recombinant Human Interferon Alpha 2b