Karl Deisseroth

Karl Deisseroth
ilustracja
Państwo działania

 Stany Zjednoczone

Data i miejsce urodzenia

18 listopada 1971[1]
Boston

Profesor
Specjalność: neuropsychiatria, bioinżynieria
Alma Mater

Uniwersytet Harvarda, Uniwersytet Stanforda

Doktorat

1998 – neurobiologia
Uniwersytet Stanforda

Profesura

2012

Karl Deisseroth (ur. 18 listopada 1971 w Bostonie) – amerykański neurobiolog i psychiatra, specjalizujący się w badaniach nad nieprawidłowym funkcjonowaniem sieci połączeń nerwowych w różnych chorobach neurologicznych i psychiatrycznych. Twórca optogenetyki oraz metody CLARITY.

Życiorys

Studiował na Uniwersytecie Harvarda, a następnie na Uniwersytecie Standforda, gdzie w 1998 roku uzyskał tytuł doktora, a w 2000 roku tytuł lekarza o specjalności psychiatria. Przez kilka następnych lat odbywał staż w szpitalu w Stanford. Następnie rozpoczął pracę na Uniwersytecie Standforda, w 2005 roku na stanowisku asystenta profesora, a od 2012 jako profesor[2].

Działalność naukowa

W 2005 ukazała się publikacja zespołu Deisserotha, w której opisano technikę pozwalającą na kontrolę określonej grupy neuronów za pomocą światła, dzięki wprowadzonemu do ich błony komórkowej białku z rodziny opsyn[3]. Deisseroth nadał tej technice nazwę „optogenetyka”. Przez następnych kilka lat jego zespół rozwijał metody optogenetyczne, a także wykorzystywał je w badaniach nad sieciami połączeń neuronów.

W 2013 ukazała się praca zespołu Deisserotha opisująca nową metodę obrazowania mózgu, nazwaną CLARITY[4][5].

W 2018 roku został odznaczony Nagrodą Kioto w dziedzinie zaawansowanych technologii[6].

Przypisy

  1. Biography Karl Deisseroth. thebrainprize.org. [zarchiwizowane z tego adresu (2014-04-16)]. - The Brain Prize.
  2. Karl Deisseroth, M.D., Ph.D. – Standford.edu.
  3. E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel i inni. Millisecond-timescale, genetically targeted optical control of neural activity. „Nat Neurosci”. 8 (9), s. 1263–1268, Sep 2005. DOI: 10.1038/nn1525. PMID: 16116447. 
  4. K. Chung, J. Wallace, S.Y. Kim, S. Kalyanasundaram i inni. Structural and molecular interrogation of intact biological systems. „Nature”. 497 (7449), s. 332–337, May 2013. DOI: 10.1038/nature12107. PMID: 23575631. 
  5. Brains as Clear as Jell-O for Scientists to Explore – New York Times, 2013.
  6. Karl Deisseroth (ang.). Kyoto Prize. [dostęp 2018-10-02].

Media użyte na tej stronie

Flag of the United States.svg
The flag of Navassa Island is simply the United States flag. It does not have a "local" flag or "unofficial" flag; it is an uninhabited island. The version with a profile view was based on Flags of the World and as a fictional design has no status warranting a place on any Wiki. It was made up by a random person with no connection to the island, it has never flown on the island, and it has never received any sort of recognition or validation by any authority. The person quoted on that page has no authority to bestow a flag, "unofficial" or otherwise, on the island.
Karl Deisseroth's Projections, Optogenetics, Disassocation, and Psychedelics (52095403529) (cropped).jpg
Autor: Steve Jurvetson from Los Altos, USA, Licencja: CC BY 2.0

Or: How to change your mind, with psychedelics and optogenetics.

Genevieve introduced the closing keynote for the PSFC Summit today: Karl Deisseroth is the pioneer of the mind-reading and writing tool (<a href="http://optogenetics.org" rel="noreferrer nofollow">optogenetics.org</a> at Stanford) that allows for individual neuron targeting and manipulation, and his new work looks at the effects of mind-altering drugs on brain function in detail.

For a sense of the power of his methods: he can take a pair of mice than were just mating happily, and with a flip of a switch, they become violent to each other. He made a mouse walk in an infinite left turn loop when a fiber optic is flipped on in the motor cortex (with no apparent awareness or distress at being controlled this way). Another team selectively turned on subsets of parenting behavior (like bringing wandering young back to the nest or grooming behaviors). They can also probe three different sub-states of anxiety that we only experience as a bundle.

How does this work? Before the plant kingdom evolved chlorophyll to harvest energy from sunlight, the more ancient bacteria used rhodopsins in a membrane-bound proton-pump to do the same. The rhodopsins captured a swath of the sun’s spectrum, tilting the algae to the leftover parts of the spectrum not yet absorbed, and this is why plants are green. Karl introduced these bacterial light-triggered elements into neurons of interest using a viral vector to the brain. He can then trigger neuronal firing optically, as the rhodopsin pump supplements the ion channels in the neuron. He can also trigger reporter molecules from the bacterial world to read out brain activity as the brain is functioning.

So, for example, he has observed a 3 Hz cycling in the retrosplenial cortex of a mouse brain on ketamine, and he has been able to reproduce the effects with optogenetic stimulation to achieve similar effects. He has also found that the dissociative drugs (ketamine and PCP) allow for reflexes to pain (e.g., heat on paw or puff of air to eyes) to continue normally, while the protective cognitive reactions (licking the paws after heat or squinting in anticipation of the next puff) disappear, a disassociation of mind and body reflexes.

He is diving deeper into the brain to investigate how this works, finding that the various subregions of the thalamus are regulated by disassociative drugs by overpowering the voting circuits with a pulsing 3 Hz modulation of the ketamine-enhanced circuits. The other nodes in the thalamus are operating as before, but do not achieve as powerful a consensus. The thalamus regulates where we spend our attention and conscious focus, to avoid doing everything we might be tempted to do simultaneously, and thereby not really doing any of them well.

In his latest work, he has found that MDMA operates very differently than Ketamine (work to be published later this year).

The implications of this level of understanding are enormous. The questions we can now ask using optogenetics will transform how we understand mental disorders and also call into question some deep philosophical questions surrounding consciousness and free will. It may also unveil the mysteries about how psychedelics operate in the brain, allowing us to optimize the use cases for testing in human clinical trials. Exciting work is going on with psilocybin for alcohol use disorder, extreme OCD and the eating disorders (which are also a disassociation of mind from body).