Konstrukcja Kochańskiego

Wzorowana na oryginalnym rysunku Kochańskiego z Acta Eruditorum ilustracja jego przybliżonej rektyfikacji okręgu

Konstrukcja Kochańskiego – przybliżona metoda rektyfikacji okręgu, czyli wykreślenia odcinka o długości równej połowie obwodu danego okręgu zaproponowana w 1685 roku przez polskiego matematyka Adama Adamandego Kochańskiego[1]. Pozwala na przybliżone wykreślenie odcinka razy dłuższego niż dany odcinek.

Opis konstrukcji

Kochanski-1.svg
  • Kreślimy okrąg o środku w punkcie i promieniu
  • Kreślimy średnicę okręgu
  • Kreślimy styczną do okręgu w punkcie
  • Kreślimy okrąg (łuk okręgu) o środku w punkcie i promieniu Punkt przecięcia (jeden z dwóch możliwych) oznaczamy jako
  • Kreślimy okrąg (lub łuk okręgu) o środku w punkcie i promieniu Punkt przecięcia okręgów o środkach i różny od punktu oznaczamy jako Punkty i wyznaczają symetralną odcinka
  • Punkt przecięcia ze styczną do okręgu w punkcie oznaczamy jako
  • Na tej prostej (na stycznej ) odkładamy 3-krotnie odcinki długości z punktu w stronę punktu uzyskując kolejno punkty
  • Odcinek ma długość w przybliżeniu równą

Odcinek jest przedłużeniem wysokości trójkąta równobocznego co oznacza, że tworzy on kąt 30° z odcinkiem [2].

Oszacowanie błędu względnego

Zatem błąd pojawia się dopiero na piątym miejscu po przecinku. Takie przybliżenie zwykle w praktycznych zastosowaniach jest wystarczające.

Kwadratura koła oparta na konstrukcji Kochańskiego

Na podstawie konstrukcji Kochańskiego możliwa jest również przybliżona kwadratura koła. Ilustruje to poniższy rysunek.

Quadratur des kreises.svg

Przypisy

  1. Adam Adamandy Kochański. Observationes Cyclometricae ad facilitandam Praxin accomodatae. „Acta Eruditorum”. 1685. 4. s. 394–398 (łac.). 
  2. Andrzej Bieliński: Geometria wykreślna. ISBN 83-7207-564-6.

Media użyte na tej stronie

Kochanski-2.svg
Autor: Delimata, Licencja: CC BY-SA 4.0
Wzorowana na oryginalnym rysunku z Acta Eruditorum ilustracja konstrukcji Kochańskiego. (Porównaj Kochanski-1.svg)
Kochanski-1.svg
Autor: Delimata, Licencja: CC BY-SA 4.0
Współcześnie prezentowana wersja konstrukcji Kochańskiego. (Porównaj Kochanski-2.svg)
Quadratur des kreises.svg
Autor: 4C, Licencja: CC-BY-SA-3.0
Illustration to Kochanski's construction of squaring the circle