Liczba doskonała
Liczba doskonała – liczba naturalna, która jest sumą wszystkich swych naturalnych dzielników właściwych (to znaczy od niej mniejszych)[1]. Korzystając z pojęcia funkcji σ, można liczby doskonałe definiować jako te, dla których zachodzi warunek:
Najmniejszą liczbą doskonałą jest , ponieważ Następną jest ponieważ
Kolejnymi są i
Największą znaną obecnie (7 grudnia 2018) liczbą doskonałą jest liczy ona 49 724 095 cyfr w rozwinięciu dziesiętnym[2].
Wszystkie znane liczby doskonałe są parzyste. Nie udało się dotąd znaleźć żadnej liczby doskonałej nieparzystej, ani dowodu, że liczby takie nie istnieją.
Metoda Euklidesa znajdowania liczb doskonałych
W IX księdze Elementów, najstarszym piśmie opisującym liczby doskonałe, Euklides podał sposób znajdowania liczb doskonałych parzystych[3]:
- należy obliczać sumy kolejnych potęg dwójki Jeżeli któraś z otrzymanych sum okaże się liczbą pierwszą, należy pomnożyć ją przez ostatni składnik i otrzymamy liczbę doskonałą.
Sposób podany przez Euklidesa każe badać kolejno sumy:
Są to sumy ciągu geometrycznego o ilorazie więc mają one postać Jeśli któraś z tych liczb okaże się liczbą pierwszą, to jest liczbą doskonałą.
Własności
Leonhard Euler udowodnił, że każda liczba doskonała parzysta ma postać gdzie jest liczbą pierwszą (nietrudno pokazać, że wtedy również jest liczbą pierwszą) – daje to wzajemnie jednoznaczną odpowiedniość liczb doskonałych parzystych z liczbami pierwszymi Mersenne’a.
Euler udowodnił, że każda liczba doskonała nieparzysta musi być postaci gdzie jest liczbą pierwszą postaci Wiadomo też, że jeśli liczba taka istnieje, to musi być większa od
Zobacz też
- liczby Mersenne’a
- liczby towarzyskie
- liczby zaprzyjaźnione
- liczby: deficytowa, nadmiarowa
Przypisy
- ↑ liczba doskonała, [w:] Encyklopedia PWN [online] [dostęp 2021-10-08] .
- ↑ List of known Mersenne prime numbers – PrimeNet, www.mersenne.org [dostęp 2020-02-19] (ang.).
- ↑ H.N. Jahnke , A history of analysis, Providence, RI: American Mathematical Society, 2003, s. 3-4, ISBN 0-8218-2623-9, OCLC 51607350 [dostęp 2021-07-19] .
Bibliografia
- Wacław Sierpiński, Arytmetyka teoretyczna.
- Włodzimierz Holsztyński, Liczby doskonałe, Delta, 12(403), s. 1–3.
- Władysław Narkiewicz, Nieparzyste Liczby doskonałe, Delta, 12(403), s. 4.
Linki zewnętrzne
- Tomasz Miller, Liczby pierwsze i doskonałe, kanał Centrum Kopernika Badań Interdyscyplinarnych na YouTube [dostęp 2022-10-28].
- Eric W. Weisstein , Perfect Number, [w:] MathWorld [online], Wolfram Research [dostęp 2020-12-12] (ang.).
- Eric W. Weisstein , Odd Perfect Number, [w:] MathWorld [online], Wolfram Research [dostęp 2020-12-12] (ang.).
- Mersenne Prime Search
- Odd Perfect Number Search. oddperfect.org. [zarchiwizowane z tego adresu (2018-11-06)].