Mars Science Laboratory

Mars Science Laboratory
Ilustracja
Inne nazwy

MSL

Zaangażowani

NASA

Indeks COSPAR

2011-070A

Rakieta nośna

Atlas V 541

Miejsce startu

Cape Canaveral Air Force Station, USA

Cel misji

Mars

Orbita (docelowa, początkowa)
Czas trwania
Początek misji

26 listopada 2011 (15:02 UTC)

Data lądowania

6 sierpnia 2012 (05:17:57 UTC)

Wymiary
Wymiary

4,5 m średnicy, 3 m wys. łazik Curiosity: 3,0 m dług., 2,8 m szer., 2,1 m wys.

Masa całkowita

3893 kg łazik Curiosity: 899 kg

Masa aparatury naukowej

75 kg

Mars Science Laboratory, MSL (oficjalna nazwa łazika: Curiosity[1]) – bezzałogowa misja kosmiczna, której celem jest zbadanie przeszłego i obecnego środowiska Marsa poprzez szereg badań, wykonanych za pomocą łazika Curiosity, wewnątrz krateru Gale. Misja rozpoczęła się 26 listopada 2011 roku wystrzeleniem sondy kosmicznej przy użyciu rakiety Atlas V (konfiguracja 541) z Cape Canaveral Air Force Station. Lądowanie na Marsie nastąpiło 6 sierpnia 2012. Główna misja łazika zaplanowana jest na 1 rok marsjański (tj. 687 ziemskich dni), z możliwością jej przedłużenia.

Opis ogólny

Badania wykonywane w trakcie misji są częścią eksperymentu, którego celem jest szersze poznanie przeszłych i obecnych procesów przebiegających w atmosferze i na powierzchni Marsa. Pojazd wyposażony jest w dziesięć instrumentów naukowych. Aparaturę można podzielić na:

  • zamontowany na maszcie osprzęt do badania otoczenia i wyszukiwania celów do pobrania próbek,
  • instrumenty na ramieniu robotycznym do badań przy bezpośrednim zbliżeniu do celu,
  • urządzenia wewnętrzne do analizy próbek i monitorowania środowiska wokół łazika.

Cele naukowe misji

Łazik Curiosity (grafika)

Eksperymenty wykonywane na powierzchni są skupione wokół następujących celów:

  • ocena możliwości występowania potencjalnych warunków do życia w przeszłości,
  • badanie możliwości utrzymania się życia organicznego na Marsie,
  • wykonanie pomiarów meteorologicznych,
  • poszukiwanie pierwiastków biogennych,
  • badanie stopnia wilgotności gleby oraz poszukiwanie wody i związków mineralnych z nią związanych,
  • pomiary widma wysokoenergetycznego promieniowania naturalnego,
  • badanie składu skał i gleby,
  • charakterystyka możliwych cyklów hydrologicznych.

Rakieta nośna

MSL został wyniesiony przez dwustopniową rakietę Atlas V-541 dostarczoną przez firmę United Launch Alliance. Konfiguracja charakteryzuje się owiewką o średnicy 5 metrów, czterema rakietami pomocniczymi i jednym silnikiem w drugim stopniu. Dolny stopień jest napędzany dwuskładnikowym paliwem złożonym z kerozyny RP-1 (substancja palna) i ciekłego tlenu (utleniacz). Silnik drugiego stopnia jest zasilany ciekłym wodorem (paliwo) i ciekłym tlenem (utleniacz).

Przebieg misji

Start rakiety Atlas V z sondą MSL
Curiosity podczas fazy opadania z rozpostartym spadochronem. Zdjęcie wykonała z orbity sonda Mars Reconnaissance Orbiter

Start

Start sondy MSL nastąpił 26 listopada 2011 roku o godz. 15:02 UTC ze stanowiska startowego SLC-41 na Cape Canaveral Air Force Station[2]. Sonda została wyniesiona przez rakietę nośną Atlas V 541. Po odpaleniu pierwszego członu rakiety zostały uruchomione cztery rakiety pomocnicze na paliwo stałe. Po ich wypaleniu (po 90 sekundach) zostały planowo odrzucone. 4,5 min od startu nastąpiło wyłączenie silnika pierwszego członu i separacja członu Centaur. Ten po 10 sekundach od wyłączenia silnika pierwszego stopnia został odpalony i o 15:13 UTC ustawił ładunek na tymczasowej orbicie parkingowej o parametrach 165 km × 324 km × 35,5°. O 15:34 UTC nastąpiło ponowne odpalenie członu Centaur w celu wprowadzenia sondy na trajektorię w kierunku Marsa. Silnik działał do 15:42 UTC i po jego wyłączeniu nastąpiła o 15:46 UTC separacja MSL od nosiciela, a stopień Centaur wykonał tzw. manewr mijania polegający na usunięciu rakiety z potencjalnej trajektorii lotu sondy[3]. Sonda znalazła się na orbicie heliocentrycznej o peryhelium 0,98 j.a., aphelium 1,53 j.a. i nachyleniu względem ekliptyki 1,7°[4].

Przelot międzyplanetarny

Ta faza lotu trwała 210 dni. Podstawowe czynności wykonane podczas tej fazy to kontrole działania systemów pokładowych i instrumentów naukowych. Wykonano trzy manewry korekcyjne (15, 120 i 180 dni po starcie). Sonda leciała trajektorią typu 1, co oznacza, że została pokonana mniej niż połowa drogi wokół Słońca między jedną a drugą planetą.

Faza zbliżeniowa

Kolejna faza trwała 45 dni. W jej trakcie nastąpił jeden dodatkowy manewr korekcyjny. Tuż przed wejściem w atmosferę Marsa miały miejsce przygotowania do tej fazy (m.in. uruchomienie specjalnych przyrządów pomiarowych i podgrzewanie układów wrażliwych na zmiany temperatury).

Członkowie zespołu opowiadają o problemach, które pojawiły się podczas ostatnich minut lądowania Curiosity na powierzchni Marsa (film)

Faza wejścia i lądowanie

Gdy statek przekroczył granicę atmosfery Marsa, rozpoczęła się ostatnia faza lotu – wejście i lądowanie (EDL – ang. Entry, Descent and Landing). Cała faza, choć najkrótsza (trwała kilkanaście minut), była krytyczna dla powodzenia całej misji. Na 10 minut przed wejściem do atmosfery statek odłączył się od modułu przelotowego (który wykonywał korekty trajektorii do Marsa). MSL wszedł w atmosferę na wysokości ok. 130 km nad powierzchnią. Po odłączeniu uruchomiły się przewidziane na tę fazę instrumenty pomiarowe. Następnie silniczki kapsuły ustawiły statek w stałym położeniu umożliwiającym bezpieczne wejście w atmosferę. Potem zostały odrzucone ciężary stabilizujące obrót statku. Trajektoria wejścia była cały czas utrzymywana przez silniki manewrujące. Kolejnym etapem podejścia było otwarcie spadochronu, które nastąpiło na wysokości 11 km, gdy statek spadał z prędkością 400 m/s. Tuż po ich otwarciu odrzucona została osłona termiczna umieszczona na spodzie kapsuły. Zaraz po tym zostały uruchomione urządzenia radarowe i termiczne kontrolujące wysokość statku. Następnie dolna część kapsuły (tj. lądownik) odłączyła się od modułu atmosferycznego ze spadochronem, po czym zostały uruchomione silniki lądujące lądownika, które od wysokości 1 km stopniowo redukowały prędkość i pozwalały na bezpieczne zniżanie. W trakcie zniżania na żurawiu (Sky Crane) został wypuszczony pojazd. Gdy dotknął gruntu (z prędkością 61 cm/s[5]), kapsuła z żurawiem odłączyła się od łazika i odleciała na bezpieczną odległość. Po przyziemieniu komputer pokładowy przełączył się z trybu podejścia do lądowania (EDL mode) na tryb powierzchniowy (surface mode) i łazik przesłał na Ziemię (poprzez sondę Mars Odyssey) pierwsze zdjęcia.

Budowa statku

Schemat elementów składowych sondy MSL:
1 – moduł przelotowy
2 – osłona tylna
3 – lądownik
4 – łazik
5 – osłona termiczna
6 – spadochron

Na konstrukcję sondy Mars Science Laboratory składają się cztery podstawowe moduły: łazik, lądownik, kapsuła i moduł przelotowy. Każdy z tych modułów odpowiada za inną fazę lotu i ma pełnić ściśle określone funkcje.

Moduł przelotowy (Cruise stage)

Głównym zadaniem modułu był transport statku na trajektorii do Marsa, który został osiągnięty za pomocą odpaleń silników korekcyjnych systemu napędowego. Sam moduł zapewniał ponadto energię elektryczną podczas rejsu i służył do komunikacji z sondą. Moduł podczas startu był połączony łącznikiem pierścieniowym ze stopniem Centaur. Z drugiej strony był przymocowany do kapsuły, w której był umieszczony łazik. Moduł przelotowy został odrzucony tuż przed wejściem w atmosferę Marsa.

Moduł zbudowany był w większości z aluminium i miał kształt płaskiego walca. Wyposażony był w radiator i ułożone pierścieniowo baterie słoneczne. System napędowy tworzyło osiem silników korekcyjnych zasilanych hydrazyną. Stopień był stabilizowany obrotowo. Nawigacja statku obejmowała czujnik światła słonecznego, szukacz gwiazd i system kontroli bezwładnościowej. Cały system nawigacyjny był połączony z łazikiem, który miał przetwarzać i wysyłać informacje z sondy. Kolejnym zadaniem modułu była kontrola temperatury przy pomocy termostatów zamontowanych wewnątrz korpusu przelotowego i radiatora głównego wraz z radiatorami pomocniczymi na zewnątrz obudowy. Do łączności z Ziemią służyła antena średniego zysku działająca w paśmie X.

Kapsuła (Aeroshell)

Kapsuła stanowiła osłonę aerodynamiczną sondy. Jej główną funkcją była ochrona termiczna podczas wejścia w atmosferę. Dodatkowo kapsuła została wyposażona w spadochron, który wyhamował statek przed ostatnią fazą lądowania. Całość można podzielić na dolną osłonę termiczną i osłonę górną ze spadochronem. Osłona górna zawierała łącznik z modułem rejsowym i układy elektroniczne. Osłona termiczna oprócz funkcji ochronnej zebrała dane o atmosferze marsjańskiej. Kapsuła była też wyposażona w osiem silników, które utrzymywały wymagany kąt natarcia. W osłonach umieszczono ponadto balasty, które po odrzuceniu zmieniły środek ciężkości całego kompleksu. Stopień ten był także wyposażony w anteny komunikacyjne. Całość zbudowana została z płyt aluminiowych pokrytych kompozytem grafitowo-epoksydowym. Osłona termiczna była pokryta ablatorem z włókien węglowych impregnowanym fenolem (PICA).

Lądownik (Descent stage)

Głównym zadaniem modułu lądującego (zwanego Sky Crane, ang. Podniebny Dźwig) było wyhamowanie statku silnikami w ostatnich minutach lotu i postawienie łazika za pomocą żurawia na powierzchni planety. Cel ten został osiągnięty dzięki ośmiu silnikom rozmieszczonym w parach na module lądującym. Gdy silniki ustaliły stały poziom zniżania, trzy wyciągane liny, do których przyczepiony był pojazd, zaczęły go stopniowo obniżać aż do miękkiego przyziemienia.

Curiosity Rover

Schemat łazika Curiosity
Łazik Curiosity w hali montażowej (2011)

Curiosity jest lądownikiem sondy - zautomatyzowanym laboratorium naukowo-badawczym. Zawiera instrumenty naukowe do zaplanowanych zadań. Jest to sześciokołowy pojazd z zamontowanym oprzyrządowaniem badawczym, ramieniem robotycznym, systemami nawigacyjnymi i komunikacyjnymi, awioniką, oprogramowaniem i autonomicznym źródłem zasilania – radioizotopowym generatorem termoelektrycznym.

Wyposażenie

Zespół i koszty misji

Misja MSL jest prowadzona dla NASA przez Jet Propulsion Laboratory w Pasadenie. Kierownikiem misji (Project Manager) jest Peter C. Theisinger z JPL. Głównym naukowcem projektu (Project Scientist) jest dr John Grotzinger z California Institute of Technology w Pasadenie.

Łazik został zaprojektowany i skonstruowany w Jet Propulsion Laboratory.

Całkowity koszt misji, w tym koszty startu, ma wynieść 2,5 mld USD[6].

Przypisy

  1. NASA wybrała nazwę dla MSL (ang.)
  2. NASA – NASA Launches Most Capable and Robust Rover to Mars
  3. Justin Ray: Atlas Launch Report. Mission Status Center (ang.). Spaceflight Now, 2011-11-26. [dostęp 2011-12-26].
  4. Jonathan McDowell: Jonathan's Space Report No. 651 (ang.). 2011-12-20. [dostęp 2011-12-26]. [zarchiwizowane z tego adresu (2012-11-12)].
  5. Curiosity Cam (ang.). 2012-08-06. [dostęp 2012-08-06].
  6. NASA: Mars Science Laboratory Launch Press Kit (ang.). 2011. [dostęp 2011-11-25].

Linki zewnętrzne

Media użyte na tej stronie

Curiosity - The Next Mars Rover.jpg
This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. In this picture, the rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.
Msl20110526 MSL Artist Concept PIA14164-full.jpg
Mars Rover Curiosity in Artist's Concept, Tall

This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. In this picture, the mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.
Mars 'Curiosity' Rover, Spacecraft Assembly Facility, Pasadena, California (2011).jpg
Zdjęcie to, zostało wykonane 26 maja 2011, w zakładzie montażu statków kosmicznych, w należącym do NASA Jet Propulsion Laboratory w Pasadenie w Kalifornii. Łazik został wysłany do należącego do NASA Kennedy Space Center na Florydzie w dniu 22 czerwca 2011. Misja ma się rozpocząć w okresie od 25 listopada do 18 grudnia 2011, a lądowanie łazika Curiosity na Marsie jest zaplanowane na sierpień 2012 roku. Naukowcy będą korzystać z instrumentów na łaziku Curiosity do odpowiedzi na pytanie czy rejon lądowania ma warunki środowiskowe korzystne dla rozwoju mikroorganizmów, oraz do ewentualnego znalezienia i zachowania śladów istnienia życia na Marsie.
593484main pia14839 full Curiosity's Sky Crane Maneuver, Artist's Concept.jpg
Curiosity's Sky Crane Maneuver, Artist's Concept

This artist's concept shows the sky crane maneuver during the descent of NASA's Curiosity rover to the Martian surface.

The entry, descent, and landing (EDL) phase of the Mars Science Laboratory mission begins when the spacecraft reaches the Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover Curiosity safe and sound on the surface of Mars.

Entry, descent, and landing for the Mars Science Laboratory mission will include a combination of technologies inherited from past NASA Mars missions, as well as exciting new technologies. Instead of the familiar airbag landing systems of the past Mars missions, Mars Science Laboratory will use a guided entry and a sky crane touchdown system to land the hyper-capable, massive rover.

The sheer size of the Mars Science Laboratory rover (over one ton, or 900 kilograms) would preclude it from taking advantage of an airbag-assisted landing. Instead, the Mars Science Laboratory will use the sky crane touchdown system, which will be capable of delivering a much larger rover onto the surface. It will place the rover on its wheels, ready to begin its mission after thorough post-landing checkouts.

The new entry, descent and landing architecture, with its use of guided entry, will allow for more precision. Where the Mars Exploration Rovers could have landed anywhere within their respective 93-mile by 12-mile (150 by 20 kilometer) landing ellipses, Mars Science Laboratory will land within a 12-mile (20-kilometer) ellipse! This high-precision delivery will open up more areas of Mars for exploration and potentially allow scientists to roam "virtually" where they have not been able to before.

In the depicted scene, the spacecraft's descent stage, while controlling its own rate of descent with four of its eight throttle-controllable rocket engines, has begun lowering Curiosity on a bridle. The rover is connected to the descent stage by three nylon tethers and by an umbilical providing a power and communication connection. The bridle will extend to full length, about 25 feet (7.5 meters), as the descent stage continues descending. Seconds later, when touchdown is detected, the bridle is cut at the rover end, and the descent stage flies off to stay clear of the landing site.
MSL landing.jpg
Entry, descent, and landing for the Mars Science Laboratory mission will break down into four parts: Guided Entry, Parachute Descent, Powered Descent and Sky Crane.
Curiosity's Seven Minutes of Terror.ogv
Team members share the challenges of Mars Science Laboratory's (Curiosity) final minutes to landing on the surface of Mars.
Mars Viking 22e169.png

Original Caption Released with NASA Image:

Photo from Viking Lander 2 shows late-winter frost on the ground on Mars around the lander. The view is southeast over the top of Lander 2, and shows patches of frost around dark rocks. The surface is reddish-brown; the dark rocks vary in size from 10 centimeters (four inches) to 76 centimeters (30 inches) in diameter. This picture was obtained September 25, 1977. The frost deposits were detected for the first time 12 Martian days (sols) earlier in a black-and-white image. Color differences between the white frost and the reddish soil confirm that we are observing frost. The Lander Imaging Team is trying to determine if frost deposits routinely form due to cold night temperatures, then disappear during the warmer daytime. Preliminary analysis, however, indicates the frost was on the ground for some time and is disappearing over many days. That suggests to scientists that the frost is not frozen carbon dioxide (dry ice) but is more likely a carbon dioxide clathrate (six parts water to one part carbon dioxide). Detailed studies of the frost formation and disappearance, in conjunction with temperature measurements from the lander’s meteorology experiment, should be able to confirm or deny that hypothesis, scientists say.
HiRISE image of MSL during EDL (refined).png

Należący do NASA łazik Curiosity i jego spadochron zostały dostrzeżone przez Mars Reconnaissance Orbiter jak opadały na powierzchnię Marsa 05 sierpnia PDT (6 sierpnia EDT). Teleskop zwierciadlany High-Resolution Imaging Experiment Science (HiRISE) wykonał to zdjęcie, kiedy odbierał transmisję danych z łazika Curiosity.

Łazik Curiosity i jego spadochron znajdują się w centrum białego kwadratu. Z tego zdjęcia wycięto mniejszy fragment i cyfrowo przetworzono. Łazik ląduje na pofałdowanych nizinach na północ od piaszczystych wydm, na skraju "Góry Sharp".

Spadochron jest w pełni wypełniony powietrzem i spełnia się dokonale. Szczegóły spadochronu takie jak szczeliny taśm na brzegach i otwór centralny są wyraźnie widoczne. Linek łączących spadochron z osłoną tylną nie widać, chociaż obserwowano je na zdjęciu z opadającą sondą Phoenix, być może ze względu na różnicę w kątach oświetlenia.

Jasna plama na tylnej osłonie lądownika zawierającego Mars Science Laboratory (MSL), może być lustrzanym odbiciem wziernikowym, poprzez wewnętrzną powierzchnię czaszy spadochronu, od marsjańskiego błyszczącego obszaru. MSL został odłączony od osłony tylnej po zrobieniu tego zdjęcia.

Zdjęcie to jest efektem, z obserwacji poczynionych przez HiRISE, skierowanym do oczekiwanego położenia MSL, około 1 minuty przed lądowaniem.

Fotografowany obiekt został uchwycony w obszarze roboczym kamery HiRISE CCD RED1, w pobliżu wschodniego skraju szerokości roboczej (RED0 jest na samym brzegu). Oznacza to, że MSL był nieco dalej na wschód, lub po przebyciu mniejszego dystansu, niż przewidywano.

Rozdzielczość zdjęcia wynosi 33.6 cm/piksel.

MSL-spacecraft-exploded-view.png
Exploded view of the five major stages of the MSL spacecraft: 1 Cruise stage, 2 Backshell, 3 Descent stage, 4 Rover, 5 Heatshield, 6 Parachute
20090428MSLEntry1.jpg
Mars Science Laboratory (MSL) landing diagram for outside the Martian atmosphere and for entry.
Mars Science Laboratory (MSL) spacecraft launches.jpg
CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides smoke and flames as it rises from the launch pad at Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source.
593431main pia14835-full full Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist's Concept.jpg
Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist's Concept

This artist's concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

The mission's entry, descent, and landing (EDL) phase begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars. During the approximately seven minutes of EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface.

Entry, descent, and landing for the Mars Science Laboratory mission will include a combination of technologies inherited from past NASA Mars missions, as well as exciting new technologies. Instead of the familiar airbag landing of the past Mars missions, Mars Science Laboratory will use a guided entry and a sky crane touchdown system to land the hyper-capable, massive rover.

In the depicted scene, the friction with the Martian atmosphere is slowing the spacecraft's descent and heating its heat shield. The rover (Curiosity) and descent stage of the spacecraft are inside the aeroshell consisting of the backshell and heat shield. This friction with the atmosphere before the opening of the spacecraft's parachute will accomplish more than nine-tenths of the deceleration of the entry, descent and landing phase.