Migracja planetarna

Wizja artystyczna gorącego jowisza

Migracja planetarna – zjawisko zmian orbity planety we wczesnych etapach formowania się układu planetarnego wokół gwiazdy. Jest ono wynikiem złożonych oddziaływań planety z innymi planetami, planetozymalami i gazem w dysku protoplanetarnym.

Wstęp

Odkrycie zaskakującej różnorodności planet pozasłonecznych skłoniło naukowców do rewizji poglądów na temat powstawania układów planetarnych. W szczególności istnienie gorących jowiszy, czyli gazowych olbrzymów na bardzo ciasnych orbitach wokół gwiazd zdawało się przeczyć dotychczasowym modelom, według których planety takie miały tworzyć się w zewnętrznych obszarach układu (za linią śniegu), tak jak w Układzie Słonecznym. Rozważano model, według którego w takich układach początkowo miało utworzyć się kilka olbrzymów na bliskich orbitach, których oddziaływanie następnie przerzucało jedną z nich na niską orbitę (tzw. Jumping Jupiter Theory). Symulacje wykazały jednak, że powstanie gorącego jowisza na stabilnej orbicie w ten sposób jest nieprawdopodobne.

Obecnie przyjęta teoria migracji planetarnej stwierdza, że planety-olbrzymy faktycznie formują się daleko od gwiazdy, a dopiero później przenoszą się na niskie orbity, lecz poprzez subtelniejsze oddziaływania z dyskiem gazowo-pyłowym i planetozymalami. Zjawisko migracji dotyczy również planet skalistych, choć zazwyczaj zmiany ich orbit są dużo mniejsze.

Typy migracji

Typu I

Ciała o masie zbliżonej do Ziemi powodują powstanie spiralnych fal gęstości w otaczającym dysku. Zazwyczaj zewnętrzna fala oddziałuje silniej z planetą, co powoduje, że traci ona moment pędu na rzecz cząstek dysku i przenosi się na niższą orbitę, odpychając gaz, pył i inne drobne ciała dalej od gwiazdy.

Typu II

Planety masywniejsze niż 10 M🜨 pochłaniają cały gaz i pył z otoczenia, otwierając wyrwę w dysku i tym samym kończąc migrację typu I. Jednakże gaz nadal wpływa w jej obszar, powodując dalszy rozrost i przesuwanie się planety, wraz z powstałą wyrwą, w stronę gwiazdy. Tak najprawdopodobniej tworzą się gorące jowisze.

Typu III

Tzw. „brutalna migracja” (ang. violent migration) – na skutek oddziaływań z resztą układu (dyskiem, innymi planetami) planeta zostaje wyrzucona poza układ lub trafia na kurs kolizyjny z gwiazdą, wskutek czego zostaje zniszczona i pochłonięta. Ślady takiego zdarzenia można znaleźć w widmie gwiazdy.

Migracja w Układzie Słonecznym

Zmiany orbit w zewnętrznym Układzie Słonecznym, ok. 4 mld lat temu: a) przed powstaniem rezonansu Jowisza i Saturna; b) po wtargnięciu Neptuna w pierwotny Pas Kuipera; c) po wyrzuceniu rozproszonych ciał przez Jowisza.

Zjawisko migracji planetarnej tłumaczy też kształt zewnętrznych peryferii Układu Słonecznego. Jest mało prawdopodobne, żeby lodowe olbrzymy – Uran i Neptun uformowały się w takiej odległości od Słońca w jakiej krążą obecnie, ponieważ tam gęstość mgławicy słonecznej była zbyt niska. Zapewne utworzyły się one na bliższych orbitach, między 15 a 20 j.a., a pierwotny Pas Kuipera był gęstszy i rozciągał się zaledwie do ok. 30 j.a. od gwiazdy. Co więcej, analiza składu chemicznego sugeruje, że Uran znajdował się dalej od Słońca niż Neptun[1].

Po 500–600 milionach lat od powstania, Jowisz i Saturn znalazły się w rezonansie orbitalnym 2:1. To zdarzenie wypchnęło Neptuna daleko od gwiazdy, w obszar dysku Kuipera. Wtargnięcie planety zaburzyło orbity planetozymali, posyłając większość z nich do wnętrza Układu, gdzie doszło do serii katastrofalnych zderzeń (tzw. Wielkie Bombardowanie)[2], jak również do dalszych przesunięć orbit planet zewnętrznych. Oddziaływanie grawitacyjne Jowisza posłało część obiektów na odległe, silnie eliptyczne orbity, tworząc Obłok Oorta, a inne, które Neptun przesunął na orbity mniej ekscentryczne, utworzyły dzisiejszy Pas Kuipera i dysk rozproszony. Niektóre spośród nich (jak Pluton) znalazły się w rezonansie orbitalnym z planetą. Wreszcie oddziaływania z pozostałościami dysku protoplanetarnego zmniejszyły ekscentryczność orbit lodowych olbrzymów, tworząc Układ Słoneczny takim, jakim znamy go dziś.

Teoria ta tłumaczy szereg zjawisk, m.in. pochodzenie wielkich basenów uderzeniowych na powierzchni Księżyca, Merkurego i Marsa, datowanych na okres ok. pół miliarda lat po powstaniu Układu, dzisiejsze orbity Urana i Neptuna, oraz niską łączną masę obiektów transneptunowych. Różnice barw powierzchni planetoid transneptunowych również mogą wynikać z odmiennego pochodzenia tych ciał – część z nich uformowała się bliżej Słońca i zawiera mniej zamrożonych substancji lotnych.

Zobacz też

Przypisy

  1. E.W. Thommes, M.J. Duncan, H.F. Levison. The Formation of Uranus and Neptune among Jupiter and Saturn. „Astronomical Journal”. 123, s. 2862, 2002. arXiv:astro-ph/0111290 (ang.). 
  2. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. „Nature”. 435, s. 466, 2005. DOI: 10.1038/nature03676. 

Media użyte na tej stronie

Exotic Atmospheres.jpg
The new finding follows the detection of these same organic molecules in the atmosphere of another hot, giant planet, called HD 189733b, by astronomers using Hubble and Spitzer data. Astronomers can now begin comparing the chemistry and dynamics of these two planets, and search for similar measurements of other candidate exoplanets, advancing toward the goal of being able to characterize planets where life could exist.
Lhborbits.png
Autor: en:User:AstroMark, Licencja: CC BY-SA 3.0
Simulation showing the outer planets and the Kuiper belt:
  • a) Before JupiterSaturn 2:1 resonance.
  • b) Scattering of Kuiper belt objects into the Solar System after the orbital shift of Neptune.
  • c) After ejection of Kuiper belt bodies by Jupiter.

Planets shown: Jupiter (green circle), Saturn (orange circle), Uranus (light blue circle), and Neptune (dark blue circle).

Simulation created using data from the Nice Model.[1]