Naturalny satelita
Naturalny satelita (księżyc) – ciało niebieskie pochodzenia naturalnego, obiegające planetę, planetę karłowatą lub planetoidę. Słowo „Księżyc” pisane wielką literą oznacza naturalnego satelitę Ziemi.
Ściśle rzecz biorąc planeta i jej księżyce krążą wokół wspólnego środka masy. Tradycyjnie tylko największy obiekt z takiego układu jest nazywany planetą, lecz w przypadku planety i księżyca o zbliżonych rozmiarach mówi się czasem o planetach podwójnych (układ Ziemia-Księżyc). Analogicznie układ Pluton−Charon może być określany jako podwójna planeta karłowata.
Etymologia
Nazwa księżyc w języku polskim oznacza „syna księcia”. W języku staropolskim rzeczowniki oznaczające czyjegoś syna tworzono poprzez dodanie końcówki -ic/-yc, np. królewic (później królewicz) - syn króla, panic (później panicz) - syn pana (możnego). Słońce uważano za księcia, a Księżyc był jego „synem”. Wg innej wersji zasadniczą staropolską nazwą Księżyca było słowo miesiąc, natomiast Księżycem określano go tylko w okresie pomiędzy nowiem a pierwszą kwadrą, traktując "nowy" miesiąc (w znaczeniu: Księżyc) jako syna "starego" miesiąca/księżyca.
Znane obiekty
W Układzie Słonecznym do 2018 roku (stan w grudniu) odkryto 185 naturalnych satelitów planet. Ziemia ma jeden duży księżyc, Mars ma dwa niewielkie księżyce, a Merkury i Wenus nie mają księżyców. Gazowe olbrzymy, o masach znacznie większych niż planety grupy ziemskiej, mogą utrzymywać rozbudowane systemy satelitów. Księżyce mają również cztery z pięciu planet karłowatych: Pluton[a] ma pięć księżyców – jeden duży i cztery znacznie mniejsze, Haumea – dwa księżyce, a Eris i Makemake po jednym księżycu. W sumie planety i znane planety karłowate okrążają 194 naturalne satelity[1].
Odkrycie księżyca planetoidy (243) Ida, Daktyla, zapoczątkowało serię odkryć księżyców planetoid. W grudniu 2018 znanych było 364 takich obiektów, będących planetoidami krążącymi wokół innych planetoid[2]. Niektóre z takich układów, jak na przykład Antiope, to planetoidy podwójne, z dwoma składnikami porównywalnej wielkości. Natomiast 2001 SN263 okazała się być planetoidą potrójną.
Pochodzenie księżyców
Ze względu na orbitę księżyce dzieli się na regularne i nieregularne. Podział ten ma przypuszczalnie związek z pochodzeniem tych obiektów. Księżyce regularne krążą w tę samą stronę, w którą planeta obraca się wokół osi, po orbitach prawie kołowych, położonych blisko płaszczyzny równika planety. Przeważa pogląd, że powstały w wyniku kondensacji tego samego dysku protoplanetarnego, z którego uformowała się planeta, wokół której krąży dany księżyc.
Księżyce nieregularne krążą po orbitach nie leżących w płaszczyźnie obrotu planety. Ich orbity są często wydłużone i zazwyczaj znacznie oddalone od planety. Orbity te określane są czasami jako chaotyczne, jako że w dłuższym okresie perturbacje ze strony Słońca mają wpływ na ruch takiego księżyca. Satelity te są przeważnie niewielkie. Istotnym wyjątkiem jest bardzo duży księżyc Neptuna, Tryton, który krąży przeciwnie do ruchu obrotowego planety. Przypuszcza się, że księżyce te są obcymi obiektami, przechwyconymi przez pole grawitacyjne planety. Istnieje kilka hipotez opisujących różne mechanizmy przechwytywania. Podczas przechwytywania musi nastąpić utrata części energii kinetycznej przechwytywanego ciała. Może to nastąpić w wyniku oporu aerodynamicznego w atmosferze planety, szczególnie, gdy jest ona młoda i otoczka gazowa ma duże rozmiary. Utrata energii może nastąpić także w dysku protoplanetarnym, na skutek zderzeń z drobnymi obiektami, zderzenia z większym ciałem i rozbicia, lub wskutek oddziaływania grawitacyjnego trzech ciał, z których jedno przejmuje nadmiar pędu drugiego i opuszcza otoczenie planety (trzeciego ciała).
Jedna z hipotez powstania Księżyca Ziemi, obecnie uważana za najpewniejszą, głosi, że powstał on w wyniku uderzenia w proto-Ziemię innej protoplanety. Księżyc utworzyła materia obu obiektów, wyrzucona na orbitę dookoła Ziemi.
Ponieważ większość księżyców jest znana tylko z obserwacji z dużej odległości (z Ziemi), hipotezy dotyczące ich pochodzenia zwykle trudno zweryfikować.
Charakterystyka fizyczna
Większość regularnych księżyców Układu Słonecznego charakteryzuje obrót synchroniczny względem ich planet macierzystych; wyjątkiem jest satelita Saturna − Hyperion, który obraca się chaotycznie z powodu mnogości zewnętrznych obiektów wpływających na jego ruch. Żaden księżyc nie jest okrążany przez inne księżyce; siły pływowe pochodzące od planety powodują, że w dłuższym czasie orbity wokół księżyców są niestabilne. Dwa księżyce mają jednak mniejszych towarzyszy w dwóch punktach Lagrange'a położonych na orbicie (satelity Saturna: Tetyda i Dione).
Księżyce planet przeważnie nie posiadają atmosfer, wyjątkiem jest Tytan krążący wokół Saturna; bardzo rozrzedzoną atmosferę ma też Tryton, satelita Neptuna. Kilka innych spośród największych księżyców posiada przy powierzchni egzosfery o znikomym ciśnieniu.
Budowa wewnętrzna
Księżyc Ziemi oraz dwa księżyce Jowisza – Io i Europa są ciałami o budowie podobnej do planet skalistych, złożonymi głównie z krzemianów. Pozostałe duże i średniej wielkości księżyce planet zewnętrznych określa się jako księżyce lodowe, ponieważ lód stanowi znaczną część ich masy. Duże księżyce mają kształt bliski kulistemu (są w równowadze hydrostatycznej) i mogą (chociaż nie muszą) mieć wnętrze podzielone na warstwy o różnej gęstości: skorupę, płaszcz i jądro. Tylko jeden księżyc, Ganimedes, posiada własne dipolowe pole magnetyczne i małą magnetosferę „zanurzoną” w magnetosferze Jowisza[3].
Najmniejsze księżyce planet przypominają planetoidy ukształtowaniem i właściwościami powierzchni. Przypuszczalnie dotyczy to również budowy wewnętrznej.
Księżyce w Układzie Słonecznym
Największe księżyce w naszym układzie planetarnym to satelita Ziemi – Księżyc, księżyce galileuszowe Jowisza: Io, Europa, Ganimedes i Kallisto, satelita Saturna – Tytan oraz księżyc Neptuna – Tryton; wszystkie one mają powyżej 2500 km średnicy.
Tabela poniżej wymienia księżyce Układu Słonecznego w kolejności malejącej średnicy; w dodatkowej kolumnie dla porównania przedstawione są też ważniejsze planetoidy, planety i obiekty pasa Kuipera.
Średnica [km] | Ziemia | Mars | Jowisz | Saturn | Uran | Neptun | Inne obiekty |
---|---|---|---|---|---|---|---|
5000–6000 | Ganimedes | Tytan | |||||
4000–5000 | Kallisto | Merkury | |||||
3000–4000 | Księżyc | Io | |||||
2000–3000 | Tryton | Pluton Eris | |||||
1000–2000 | Rea | Tytania | Charon (50000) Quaoar | ||||
100–1000 | Himalia | Enceladus | Miranda | Proteusz | Hiʻiaka Namaka | ||
50–100 | Tebe | Pandora | Kaliban | Talassa | (253) Mathilde i wiele innych | ||
10–50 | Fobos | Karme | Siarnaq Atlas | Ofelia Kordelia | Sao | Hydra | |
mniej niż 10 | Cruithne[4] | Co najmniej 63 księżyce Jowisza | Co najmniej 56 księżyców Saturna | zbyt wiele, by wymienić |
Księżyce pozasłoneczne
Najprawdopodobniej wiele planet pozasłonecznych, które krążą wokół gwiazd innych niż Słońce, jest okrążanych przez własne naturalne satelity. Księżyce planet pozasłonecznych nazywane są egzoksiężycami.
Zobacz też
Uwagi
- ↑ Do 24 sierpnia 2006 r. Pluton uznawany był za planetę.
Przypisy
- ↑ How Many Solar System Bodies. [dostęp 2018-12-15]. (ang.).
- ↑ Wm. Robert Johnston: Asteroids with Satellites. Johnston's Archive, 2018-12-01. [dostęp 2018-12-15]. (ang.).
- ↑ Adam P. Showman, Renu Malhotra. The Galilean Satellites. „Science”. 286, s. 77-84, 1999-10-01. (ang.).
- ↑ Jest to właściwie planetoida krążąca po orbicie okołosłonecznej w rezonansie z Ziemią 1:1, umieszczona tu dla porównania.
Linki zewnętrzne
|
|
Media użyte na tej stronie
Cassini color image of Rhea, showing the wispy trailing hemisphere.
Saturn Cassini-Huygens (NASA)
Instrument: Imaging Science Subsystem - Narrow Angle
Saturn's peaceful beauty invites the Cassini spacecraft for a closer look in this natural color view, taken during the spacecraft's approach to the planet. By this point in the approach sequence, Saturn was large enough that two narrow angle camera images were required to capture an end-to-end view of the planet, its delicate rings and several of its icy moons. The composite is made entire from these two images.
Moons visible in this mosaic: Epimetheus (116 kilometers, 72 miles across), Pandora (84 kilometers, 52 miles across) and Mimas (398 kilometers, 247 miles across) at left of Saturn; Prometheus (102 kilometers, 63 miles across), Janus (181 kilometers, 113 miles across) and Enceladus (499 kilometers, 310 miles across) at right of Saturn.
The images were taken on May 7, 2004 from a distance of 28.2 million kilometers (17.6 million miles) from Saturn. The image scale is 169 kilometers (105 miles) per pixel. Moons in the image have been brightened for visibility.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Office of Space Science, Washington, D.C. The Cassini orbiter and its two onboard cameras, were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.
For more information, about the Cassini-Huygens mission visit, http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.A composite of two photos taken May 5th, 2005 - of Dione and Enceladus
Courtesy NASA/JPL-CaltechThis image of Uranus was compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers (5.7 million miles) from the planet, several days from closest approach. This picture has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The picture is a composite of images taken through blue, green and orange filters. The darker shadings at the upper right of the disk correspond to the day-night boundary on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the absorption of red light by methane gas in Uranus' deep, cold and remarkably clear atmosphere.
Uploader's notes: The original NASA/Cowart PNG image has been modified by flattening (combining layers), cropping and converting to JPEG format.
Original caption released with image:
Voyager 2 Narrow Angle Camera image of Neptune taken on August 20, 1989 as the spacecraft approached the planet for a flyby on August 25. The Great Dark Spot, flanked by cirrus clouds, is at center. A smaller dark storm, Dark Spot Jr., is rotating into view at bottom left. Additionally, a patch of white cirrus clouds to its north, named "Scooter" for its rapid motion relative to other features, is visible.
This image was constructed using orange, green and synthetic violet (50/50 blend of green filter and UV filter images) taken between 626 and 643 UT.
Image Credit: NASA / JPL / Voyager-ISS / Justin Cowart