Orbital s
Niektóre z zamieszczonych tu informacji od 2018-06-14 wymagają weryfikacji. Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu. Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu. |
Orbital s – orbital, czyli falowa funkcja własna elektronu w polu oddziaływania jądra lub rdzenia atomowego, który odpowiada pobocznej liczbie kwantowej Energia elektronu na orbitalu jest zależna od wartości głównej liczby kwantowej, Wartości funkcji falowej w różnych punktach sferycznej chmury elektronowej otaczającej ładunek centralny nie zależą od kierunku promienia sfery. Charakter ich zależności od odległości od centrum jest różny dla różnych liczb kwantowych Najbardziej prawdopodobne jest znalezienie elektronu w takiej odległości od jądra, która jest zbliżona do promienia odpowiedniej orbity Bohra.
Równanie Schrödingera i orbitale
Równanie Schrödingera wiąże funkcję falową z energią całkowitą Dla tzw. stanów stacjonarnych – takich, w których energia nie zmienia się w czasie – ma ogólną postać:
gdzie – operator Hamiltona.
Rozwiązania otrzymanego równania mają sens fizyczny dla ściśle określonych wartości energii całkowitej („wartości własne” operatora) i odpowiadających im „funkcji własnych” – orbitali.
W przypadku atomu wodoru lub „jonów (atomów) wodoropodobnych” całkowita energia układu jest wyrażana jako suma:
- energii pędu elektronu wokół jądra:
gdzie:
- – pęd,
- – masa elektronu,
- energii potencjalnej kulombowskich oddziaływań dwóch ładunków:
gdzie:
- i – ładunki jądra i elektronu,
- – odległość.
W czasie rozwiązywania równania stwierdza się, że ma ono sens tylko dla określonego zbioru liczb naturalnych – liczb kwantowych: głównej pobocznej i magnetycznej Jest to równoznaczne z wykazaniem, że energia elektronu, kwadrat momentu pędu i kota składowa momentu pędu są kwantowane. Każda z tak otrzymanych funkcji własnych jest orbitalem.
Orbitale przedstawia się jako iloczyny prostszych funkcji: i
gdzie (dla ):
Energia elektronu (wartość własna operatora) zależy od wartości a wartość funkcji własnej – od i Kwadrat bezwzględnej wartości modułu tej funkcji określa gęstość prawdopodobieństwa znalezienia elektronu w danym miejscu otoczenia jądra (zobacz: gęstość elektronowa).
Orbital
Gdy poboczna liczba kwantowa orbital nosi nazwę „orbitalu ”. Symbole oznaczają orbitale o różnych wartościach głównej liczby kwantowej
W przypadku orbitalu wartości funkcji falowej w różnych punktach otoczenia jądra zależą od wartości a nie zależą od i („chmura elektronowa” wewnątrz sfery).
Na wykresach funkcji opisujących zależność od (radialna funkcja rozkładu gęstości ładunku) występują maksima i minima. Dla różnych wartości głównej liczby kwantowej uzyskuje się funkcje świadczące o największym prawdopodobieństwie występowania elektronu w odległościach zbliżonych do promieni odpowiednich orbit w modelu atomu Bohra.
Przykład orbitalu 3s
Funkcja falowa dla orbitalu 3s ma postać:
gdzie dolny indeks (3,0,0) zawiera informację o liczbach kwantowych ( ).
Energia jest równa:
gdzie:
- – rydberg, pozaukładowa jednostka energii (energia wiązania elektronu w atomie wodoru),
- – elektronowolt.
Zobacz też
- hybrydyzacja (chemia)
- orbital p
- sprzężone wiązania wielokrotne
- wiązanie pi
- wiązanie sigma
- wiązanie wielokrotne
Bibliografia
- Heinz A. Staab: Wstęp do teoretycznej chemii organicznej. Warszawa: Państwowe Wydawnictwo Naukowe PWN, 1966, s. 7–12.
- Przykłady zastosowań równania Schrödingera; Widma cząsteczkowe; Fotochemia. W: Stanisław Bursa: Chemia fizyczna. Warszawa: Państwowe Wydawnictwo Naukowe PWN, 1979, s. 46–61. ISBN 83-01-00152-6.
- Antoni Basiński, Adam Bielański, Kazimierz Gumiński i inni: Chemia fizyczna. Wyd. 3. Warszawa: Państwowe Wydawnictwo Naukowe, 1966, s. 86–110.
Media użyte na tej stronie
Atomowe orbitale; 2. orbital s
Autor: Carlo Barraco, Licencja: GPL
Hydrogen Orbitals, N=6, L=0, M=0. Note that this image doesn't show a cross-section of the probability density , but rather an integrated probability around a thin spherical shell . In fact the probability density is largest for the innermost antinodes. But due to increased radii and spatial volume, the total probability for the outer antinodes is higher. However in this picture the integrated brightness for the outer antinodes is disproportionally too large, compared to the integrated probability density of the electron. The actual total probability to find an electron in each antinode, starting from the center, is {0.17%, 1.0%, 2.6%, 6.0%, 14%, 76%}. But what's shown in the image is {0.0026%, 0.070%, 0.49%, 2.2%, 8.9%, 88%}.
Autor: Mets501, Licencja: CC-BY-SA-3.0
Polar to cartesian.svg with changed angular coordinate