Pęk prostych

Niektóre z prostych pęku o środku A

Pęk prostych – zbiór wszystkich prostych spełniających jeden z dwóch warunków:

  • przechodzących przez ustalony punkt[1], zwany środkiem pęku lub wierzchołkiem pęku[1];
  • równoległych do ustalonej prostej (przechodzących przez punkt nieskończoności). W tym drugim przypadku mówi się o niewłaściwym pęku prostych albo o kierunku.

Każde dwie proste na jednej płaszczyźnie są współpękowe; gdy są równoległe, to mówimy że są współpękowe w sposób niewłaściwy. Rozważa się też pęki bardziej ogólnych krzywych stożkowych, zdefiniowane analitycznie[2].

Opis analityczny

Równanie pęku prostych na płaszczyźnie, o środku wyznaczonym przez nierównoległe proste, zapisujemy w postaci:

gdzie spełniają warunek

Każda prosta przechodząca przez środek pęku da się przedstawić powyższym równaniem (mówimy, że jest współpękowa z wszystkimi prostymi przechodzącymi przez ten punkt) i, na odwrót, każde równanie powyższej postaci przedstawia pewną prostą należącą do pęku.

Jeżeli proste mają odpowiednio równania:

to są one współpękowe (należą do jednego pęku) wtedy i tylko wtedy, gdy istnieją trzy różne od zera liczby takie, że spełnione jest równanie:

lub równoważnie

Zobacz też

Przypisy

  1. a b pęk prostych, [w:] Encyklopedia PWN [online] [dostęp 2021-10-10].
  2. pęk, [w:] Encyklopedia PWN [online] [dostęp 2022-03-13].

Media użyte na tej stronie

Lines.svg
Autor: Mik, Licencja: CC BY-SA 3.0
Linie przecinające się w punkcie A.