Paraboloida eliptyczna

Paraboloida eliptyczna dla a=2, b=3, na obszarze
[-5,5]x[-5,5].

Paraboloida eliptyczna to nieograniczona powierzchnia drugiego stopnia mająca jedną i dwie wzajemnie prostopadłe płaszczyzny symetrii, jedna z dwóch odmian paraboloidy.

Powierzchnia ta powstaje w wyniku przesunięcia paraboli wzdłuż innej paraboli, przy czym obie te parabole spełniają następujące warunki[1]:

  • płaszczyzny, w których leżą, są prostopadłe,
  • ich osie symetrii są równoległe,
  • ich ramiona są skierowane w tę samą stronę.

W przypadku, gdy parabole są przystające, otrzymana powierzchnia jest paraboloidą obrotową.

Paraboloidę eliptyczną można też opisać inaczej: jeśli mamy daną elipsę F, prostą Z przechodzącą przez jej środek, prostopadłą do płaszczyzny F, oraz punkt W na prostej Z poza płaszczyzną F, to paraboloidę eliptyczną tworzą wszystkie parabole o osi symetrii Z przechodzące przez punkt W i elipsę F.

Równanie paraboloidy eliptycznej ma postać[1]:

.

Przekrój paraboloidy eliptycznej płaszczyzną prostopadłą do osi symetrii jest elipsą, a dowolną płaszczyzną równoległą do tej osi jest parabolą.

Kształt paraboloidy eliptycznej mają samochodowe reflektory, ponieważ światło wychodzące z żarówki umieszczonej w ognisku jednej z parabol tworzących tę paraboloidę po odbiciu rozchodzi się w płaszczyźnie drugiej z tych parabol.

Zobacz też

Przypisy

  1. a b paraboloida eliptyczna, [w:] Encyklopedia PWN [online] [dostęp 2021-10-03].

Linki zewnętrzne


Media użyte na tej stronie