Pegmatyt

Przykłady pegmatytów
Szerlit w pegmatycie granitowym
Kalcyt w pegmatycie – k. Zimnik
Strefa przerostów pismowych w pegmatycie granitowym
Pegmatyt granitowy z kalcytem i klinochlorem
Mineralizacja pegmatytowa – ortoklaz, klinozoisyt, kalcyt, fluoryt i in.
Mineralizacja pegmatytowa – ortoklaz, klinozoisyt, kalcyt, fluoryt i in.
Pegmatyt z muskowitem
Pegmatyt z mikroklinem, fluorytem, klinochlorem oraz kwarcem – Paszowice
Pegmatyt w aplogranicie z kwarcem dymnym, epidotem i skaleniami
Pegmatyt granitowy z kwarcem, K-skaleniem oraz epidotem
Żyły pegmatytowe
Ciało pegmatytowe w gnejsie amfibolitowym. Czechy
Szerlit w pegmatycie
Pegmatyt muskowitowe. W składzie mineralnym widoczne także plagioklazy z wyraźnymi zmianami wtórnymi
Pegmatyt skał alkalicznych
Pegmatyt anatektyczny z muskowitem
Pegmatyt anatektyczny z andaluzytem (różowy)
Pegmatyt anatektyczny z biotytem
Pegmatyt anatektyczny z biotytem
Pegmatyt anatektyczny na kontakcie z migmatytem
Pegmatyt hybrydowy z Szklar na Dolnym Śląsku, widoczne słońca turmalinowe
Pegmatyt hybrydowy z Wir na Dolnym Śląsku, widoczne czerwone granaty
Hornblendyt apatytowy z Bystrzycy Górnej – rodzaj pegmatytu skał ultramaficznych
Przerosty pismowe w pegmatycie – główny rodzaj tekstury pegmatytowej. Pegmatyt anatektyczny z Michałkowej w Górach Sowich
Gniazdo pegmatytu granitowego. Rock Creek Canyon, Wschodnia Sierra Nevada, Kalifornia

Pegmatyty – rodzaj skał magmowych charakteryzujących się szczególną mega- lub gigantokrystaliczną teksturą, wzbogaconych w pierwiastki niekompatybilne oraz minerały zawierające składniki lotne jak fluor, bor, fosfor i inne. Najczęstszym typem są pegmatyty granitoidowe, ale występują również pegmatyty gabrowe, sjenitowe, skał wysoko alkalicznych (pegmatyty agpaitowe i miaskitowe). Nazwa pochodzi od gr. pegma – silne łącze, stwardniałość, dla odwzorowania zwięzłości granitu pismowego. Skałę tę wyróżnił i opisał po raz pierwszy René-Just Haüy w 1813 roku[1].

Charakterystyka petrograficzna pegmatytów

Struktura i tekstura

Pegmatyty mają zazwyczaj masywne i zbite struktury oraz bezładne tekstury. Są skałami jawnokrystalicznymi o bardzo dużych kryształach (od kilku centymetrów do kilkunastu metrów). Zdarzają się pegmatyty miarolityczne z gniazdami wypełnionymi szczotkami krystalicznymi najlepiej wykształconych minerałów. Podstawową strukturą pegmatytową są przerosty pismowe, zwane także granitem pismowym (przypominające pismo hebrajskie). Strefy pismowe występują zazwyczaj przy kontakcie ze skałami osłony obok strefy aplitowej.

Odznaczają się białą barwą, ale także zieloną, żółtawą, różową, czerwoną, czarną. Występują w formach żyłowych, soczewach i gniazdach.

Skład mineralny

Główne minerały pegmatytów, szczególnie granitoidowych i gabrowych, są takie same jak skał otoczenia, odróżnia je tylko rozmiar. Przykłady największych kryształów opisanych z pegmatytów to:

Największe okazy znalezione w Polsce to[3]:

Strefowość pegmatytów

Strefowość skał żyłowych pochodzenia magmowego lub metamorficznego jest rezultatem interakcji minerałów krystalizujących ze skałami osłony. Wymienione niżej strefy pegmatytów powstałych z kwaśnych magm opisane są w kolejności od stref kontaktowych (zewnętrznych) do jądra pegmatytu. Pegmatyty skał zasadowych i alkalicznych nie wykazują strefowości, a jedynie gigantokrystaliczną strukturę.

Dla granitoidowych

Dla hybrydalnych

Rodzaje pegmatytów

Granitoidowe

Występują bezpośrednio w skałach granitoidowych (granitowe, granodiorytowe, pegmatyty kwaśne). Zwykle ich główny skład mineralny jest taki jak skał otoczenia. Różnią się natomiast składem ilościowym pierwiastków, co zostało przedstawione w poniższej tabel[5]:

SkładnikGranitPegmatyt
[%] wag.
SiO271,369,7–75,2
Al2O314,314–17
CaO20,2–0,9
Na2O3,72,7–4,2
K2O4,12,7–4,4
P2O50,10,1–1,2
[ppm]
Li24> 10 tys.
Be2–4max. 605
Cs2–827 tys.
Sn1–912–3200

Agpaitowe

Pegmatyty agpaitowe[6] stowarzyszone są ze nefelinowymi sjenitami – peralkalicznymi skałami agpaitowymi, tj. charakteryzującymi się m.in. występowaniem złożonych krzemianów Ti, Zr i REE (np. eudialit, cyrkonolit) zamiast typowych minerałów Ti-Zr jak tytanit, cyrkon czy ilmenit[7]. Charakteryzuje je stosunek K2O + Na2O / Al2O3 > 1. Są szczególnie wzbogacone w cyrkon i tytan. Ich skład mineralny przedstawia się następująco: nefelin, mikroklin, eudialit, egiryn, ramzait, lamprofylit, sodalit, elpidyt, katapleit, ilmenit i inne. Ich powstawanie i historię opisuje się w trzech etapach:

  • wzrost zasadowości
  • maksimum zasadowości
  • spadek zasadowości

Występują na Półwyspie Kola, na Grenlandii (kompleks alkaliczny Ilímaussaq), a także w Polsce w intruzji Ełku.

Miaskitowe

Jest to rodzaj pegmatytów skał wysoko-alkalicznych typu sjenitów nefelinowych. Charakteryzuje ten rodzaj stosunek K2O + Na2O / Al2O3 < 1. Nazwa pochodzi od miejscowości Miass na Uralu. Zawierają minerały bogate w niob, tantal i ziemie rzadkie. Ich charakterystyczny skład mineralny to: nefelin, mikroklin, albit, biotyt, egiryn, tytanit, cyrkon, pirochlor, apatyt, monacyt, bastnazyt, cyrkonalit i fluoryt.

Hybrydowe (desilifikowane)

Powstają w wyniku intruzji skały kwaśnej w masyw ultrazasadowy (np. serpentynitowy). Charakteryzują się zawartością pierwiastków typowych dla skał ultramaficznych, które nie są powiązane genetycznie ze skałami kwaśnymi – np. Cr. W tego typu pegmatytach występują między innymi szmaragdy lub apatyt manganowy. W Polsce występują np. w kopalni rud niklu „Marta” w Szklarach[8] lub w Wirach.

Anatektyczne

Powstają na bardzo dużych głębokościach i są powiązane ze skałami wysokiego stopnia metamorfizmu jak granulity i migmatyty. Powstają w wyniku krystalizacji z wtórnej magmy anatektycznej. Przykładem są pegmatyty Gór Sowich na Dolnym Śląsku[8].

Modele genetyczne pegmatytów

Model genetyczny Fersmana

Opublikowany w 1940 roku przedstawia etapy powstawania poszczególnych rodzajów pegmatytów granitowych:

Rozwój pegmatytowy magmy granitowej według Fersmana[9]
etapmagmowypomagmowypneumatolitycznyhydrotermalnyhipergeniczny
geofazamagmowa Apomagmowa Bpegmatytowa Cpegmatoidowe D-Enadkrytyczne F-Ghydrotermalne H-I-Khipergenetyczna L
temperatura °C
900
800
700
600
500
400
50
proces
przedpegmatytowy
pegmatytowy
popegmatytowy
środowisko krystalizacji
stop (3 fazy)
roztwór fluidowy (2 fazy)
hydrotermalny (3 fazy)
  • Etap magmowy – geofaza A, magmowa, krystalizacja granitu ze słońcami turmalinowymi.
  • Etap pomagmowy – etap krystalizacji ze stopu resztkowego (3 fazy – stała, ciekła i gazowa)
  • Etap pneumatolityczny – krystalizacja z roztworu gazowo-ciekłego (2 fazy – ciekła i gazowa)
    • geofazy D i E – pegmatyt kwarcowo-skaleniowy i strukturze blokowej z występującymi w nim miarolami. Występują szerlit, topaz, muskowit i beryl.
  • Etap hydrotermalny – krystalizacja z roztworu hydrotermalnego (3 fazy – stała, ciekła i gazowa)
  • Etap hipergeniczny – powstaje kaolinit, kalcyt, chalcedon oraz inne minerały hipergeniczne (minerały wtórne).
Kolejność tworzenia się asocjacji mineralnych w pegmatytach granitowych[9].
etap tworzenia
się pegmatytów
typ pegmatytów (według głębokości)
bardzo dużych głębokości
(>10 km) REE
dużych głębokości
(7–10 km) (mikonośne)
średnich głębokości
(3,5–7 km) (metali rzadkich)
małych głębokości
(1,5–3,5 km) (kryształów górskich)
Ca – Na
biotyt, plagioklaz, kwarc
I. K
mikroklin, kwarc
II. K
mikroklin
I etap hydrolizy
allanit, samarskit, fergusonit, monacyt
muskowit, turmaliny, apatyt
spodumen, beryl, trfyfyllit, Ta-Nb muskowit
beryl, muskowit
I. Si
kwarc, albit
Na
beryl, albit, tantalit
II etap hydrolizy (grejzenowy)
kwarc, muskowit
kasyteryt, kwarc, lepidolit, polucyt, amblygonit, pirochlor, turmaliny polichromatyczne, muskowit
II. Si
kwarc
kryształ górski

Aktualne hipotezy

  • Z magmy resztkowej bogatej w składniki lotne i wodę[10] – krystalizacja minerałów ze stopu bogatego w składniki lotne i wodę. Powstają struktury pismowe, które odzwierciedlają oddzielenie się ze stopu wodnego fluidu. Fluid powoduje separację sodu od potasu, a przy obecności Cl krystalizuje jądro pegmatytu.
  • Ogólnie przyjęty model genetyczny pegmatytów – był on aktualny do czasu przeprowadzenia prac eksperymentalnych amerykańskiego profesora Davida Londona. Zakładał on dwuetapowość jego powstawania. Proces zaczyna się jak magmowy zaś kończy jako hydrotermalny.Zależnie od zmieniających się parametrów P-T oraz stężenia składników. Określone asocjacje mineralne powstają najpierw drogą krystalizacji z magmy resztkowej zaś na końcu drogą rekrystalizacji/zastępowania lub krystalizacji z roztworów hydrotermalnych[11].
  • Ze stopu magmowego[12] – jako pierwsze krystalizują składniki bezwodne (kwarc, skalenie). Woda natomiast jest dalej rozpuszczana, a jej zawartość dochodzi nawet do 20% w stopie magmowym. Rozpuszczalność H2O rośnie poprzez działanie modyfikatorów jakimi są składniki lotne – F i B.

Podział genetyczny pegmatytów kwaśnych ze względu na głębokość powstawania

Podział ten obejmuje pegmatyty intragranitowe (wewnątrz intruzji) lub bez przestrzennego związku z granitami w skałach metamorficznych[13].

  • Pegmatyty abisalne – powstają na głębokości około 11 km przy ciśnieniach 5–6 kbar i temperaturze 700–800 °C. Są to głównie pegmatyty anatektyczne powstałe w warunkach facji amfibolitowej do granulitowej. Powstają przy częściowym topnieniu skał osłony. Zawierają minerały REE, Zr, Ti oraz Nb.
  • Pegmatyty muskowitowe – powstają na głębokości około 7–11 km przy ciśnieniach 4–6 kbar i temperaturze 600–700 °C. Powstają w wyniku anateksis lub frakcjonacji magmy granitowej. Są zbudowane głównie ze skaleni i muskowitu. Zawierają minerały użyteczne z Be, Nb, U, Th oraz REE.
  • Pegmatyty pierwiastków rzadkich – powstają na głębokości około 3,5–7 km przy ciśnieniach 2–4 kbar i temperaturze 500–700 °C. Występują w skałach zmetamorfizowanych w warunkach facji typu Abukuma, w subfacji andaluzytowo-kordierytowo-muskowitowej. Są efektem frakcjonowania silnie zdyferencjowanej magmy granitowej. Zawierają minerały z pierwiastkami takimi jak Li, Be, Cs, Y, REE, Nb, Ta, Sn, F, B, P, Ti, U i Th.
  • Pegmatyty miarolityczne – powstają na głębokości około < 3,5 km przy ciśnieniach 1–2 kbar i temperaturze 400–700 °C. Występują w nich miarole wypełnione szczotkami krystalicznymi co odzwierciedla relatywnie niskie ciśnienia. Skład pierwiastków rzadkich taki sam jak w pegmatytach pierwiastków rzadkich.

Złoża pegmatytowe

W geologii złóż pegmatyty dzieli się na dwie kategorie: pegmatyty proste (kwarc, ortoklaz, mika) i złożone (kwarc, miki litowe, kasyteryt, beryle, turmaliny, topaz, fluoryt, apatyt). Rozmiary ciał pegmatytowych są zróżnicowane, do kilku km. Pegmatyty zalegające na średnich głębokościach są źródłem niobu, tantalu, toru, berylu, cyny i litu. Pegmatyty powstałe stosunkowo płytko są źródłem drogich kamieni, fluorytu w asocjacji z kwarcem. Istnieje wyraźny związek stref pegmatytowych ze skrajnie kwaśnymi intruzjami granitowymi środkowego stadium geosynklinalnego. Ponieważ pasy geosynklinalne i towarzyszące im intruzje posiadają liniowy przebieg, to strefy pegmatytowe również posiadają pasmowe rozprzestrzenienie. Długości pasm są znaczne np. północnoamerykańskie 4000 km, brzeżne syberyjskie 4500 km. Starsze pasma (przedpaleozoiczne) odznaczają się występowaniem pegmatytów muskowitowych. Pegmatyty młodsze zawierają częściej metale rzadkie. Występują w nich grejzeny, kwarcowoskaleniowe, kwarcowo-turmalinowe i kwarcowe rudy cynku, wolframu (pasmo malajskie, brazylijskie, południowo-afrykańskie). Pegmatyty przekrystalizowane i strefowe są jedynym źródłem muskowitu i ważnym źródłem skaleni, kwarcu, kamieni szlachetnych (beryl-akwamaryn, turmalin, granat, ametyst, topaz). Są praktycznie jedynym źródłem litu (lepidolit, spodumen, cynwaldyt), berylu, cezu, (polucyt), rubidu (domieszki w lepidolicie i polucycie), niobu, tantalu, cyny (kasyteryt), wolframu (wolframit), rzadziej uranu (uraninit, thorianit)[14][15][16].

Występowanie

W obrębie masywów granitoidowych, gabrowych, sjenitowych, fojaitowych, a także w skałach metamorfizmu wysokiego stopnia (granulity, migmatyt) – tzw. pegmatyty anatektyczne.

Zastosowanie

  • Jako źródło pozyskiwania pierwiastków rzadkich (REE, Li, Sn, U, Th, Be, B, Nb, Ta...) do celów technicznych (np. pegmatyty są jedynym źródłem berylu – metalu wykorzystywanego w przemyśle lotniczym).
  • Źródło pozyskiwania pierwiastków do celów elektrotechnicznych (Li, Rb, Cs, Ga).
  • Pierwotnie (XIX, początek XX wieku) służyły jako kopaliny do pozyskiwania czystych skaleni dla celów ceramicznych, dziś ich znaczenie w tym celu znacznie spadło.
  • Do celów naukowych – źródło wielu nowych minerałów, źródło pozyskiwania informacji o rozwoju procesów magmowych.
  • Źródło kamieni szlachetnych (rubin, szafir, szmaragd, turmaliny, spodumen i inne).
  • Źródło minerałów przemysłowych, takich jak kwarc, skalenie, miki, kaolin, spodumen dla przemysłu ceramicznego, szklarskiego, elektronicznego, kosmetycznego (np. kosmetyki kolorowe) i farmaceutycznego (leki przeciwpsychotyczne na bazie Li) i in.[17]

Przypisy

  1. a b E. Szełęg: Atlas minerałów i skał. Bielsko-Biała: Pascal, 2007, s. ?. ISBN 978-83-7513-138-3.
  2. Spodumene from the Etta Mine, South Dakotah. W: The Giant Crystal Project [on-line]. [dostęp 2014-11-03]. [zarchiwizowane z tego adresu (2017-05-07)].
  3. a b c d Żaba J., Ilustrowana encyklopedia skał i minerałów, Wyd. Videograf II, Chorzów 2006, ISBN 978-83-7183-385-7
  4. G. Cressey, I. F. Mercer: Crystals. Londyn: Natural History Museum, 1999.
  5. publikacja w otwartym dostępie – możesz ją przeczytać Petr Černý. Rare-element Granitic Pegmatites. Part II: Regional to Global Environments and Petrogenesis. „Geoscience Canada”. 18 (2), 1991. [dostęp 2018-01-16]. 
  6. Daniel Müller-Lorch, Michael A.W. Marks, Gregor Markl. Na and K distribution in agpaitic pegmatites. „Lithos”. 95 (3–4), s. 315-330, 2007. DOI: 10.1016/j.lithos.2006.08.004. 
  7. Henning Sorensen. The agpaitic rocks – an overview. „Mineralogical Magazine”. 61 (4), s. 485–498, 1997. 
  8. a b publikacja w otwartym dostępie – możesz ją przeczytać Adam Pieczka. A rare mineral-bearing pegmatite from the Szklary serpentinite massif, the Fore-Sudetic Block, SW Poland. „Geologia Sudetica”. 33 (1), s. 23-31, 2000. [dostęp 2018-01-16]. 
  9. a b Aleksandr Evgen'evič Fersman: Pegmatity. T. I: Granitnye pegmatity. Tretʹe ispravdennoe i dipolnennoe izdanie. Moskwa, Leningrad: Izdatelʹstvo Akademii Nauk SSSR, 140, s. 712.
  10. Jahns, Richard H., Burnham, C. Wayne. Experimental studies of pegmatite genesis. 1. A model for the derivation and crystallization of granitic pegmatites. „Economic Geology”. 64 (8), s. 843 -864, 1969. DOI: 10.2113/gsecongeo.64.8.843. 
  11. A. Polański: Geochemia i surowce mineralne. Warszawa: Wydawnictwa Geologiczne, 1988, s. ?. ISBN 83-220-0332-3.
  12. David London – pegmatopia
  13. Petr Černý. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. „Applied Geochemistry”. 7 (5), s. 393-416, 1992. DOI: 10.1016/0883-2927(92)90002-K. 
  14. H. Gruszczyk: Nauka o złożach. Warszawa: Wydawnictwa Geologiczne, 1984, s. ?.
  15. E. Konstantynowicz: Geologia złóż kopalin – kopaliny energetyczne. Skrypty nr 496, 1994, s. ?.
  16. W.I. Smirnow: Geologia złóż kopalin użytecznych. Warszawa: Wydawnictwa Geologiczne, 1986, s. ?.
  17. Glover, Alexander S., Rogers, William Z., Barton, James E.. Granitic Pegmatites: Storehouses of Industrial Minerals. „Elements”. 8 (4), s. 269–273, 2012. DOI: 10.2113/gselements.8.4.269. 

Bibliografia

  • A. Bolewski, W. Parachoniak: Petrografia. Warszawa: Wydawnictwa Geologiczne, 1982. ISBN 83-220-0173-8.
  • Petr Černý. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. „Applied Geochemistry”. 7 (5), s. 393-416, 1992. DOI: 10.1016/0883-2927(92)90002-K. 
  • W. Gabzdyl: Geologia złóż. Gliwice: Wydawnictwo Politechniki Śląskiej, 1999, s. ?.
  • H. Gruszczyk: Nauka o złożach. Warszawa: Wydawnictwa Geologiczne, 1984, s. ?.
  • E. Konstantynowicz: Geologia złóż kopalin – kopaliny energetyczne. Skrypty nr 496, 1994, s. ?.
  • D. London: Granitic pegmatites: an assassment of current concepts and directions for the future. Lithos nr 80, 2005, s. 281-303.
  • A. Majerowicz, B. Wierzchołowski: Petrologia skał magmowych. Warszawa: Wydawnictwa Geologiczne, 1990. ISBN 83-220-0335-8.
  • publikacja w otwartym dostępie – możesz ją przeczytać Adam Pieczka. A rare mineral-bearing pegmatite from the Szklary serpentinite massif, the Fore-Sudetic Block, SW Poland. „Geologia Sudetica”. 33 (1), s. 23-31, 2000. [dostęp 2018-01-16]. 
  • Pegmatite. vulcan.wr.usgs.gov. [dostęp 2014-11-03]. [zarchiwizowane z tego adresu (2013-09-03)].
  • A. Polański: Geochemia i surowce mineralne. Warszawa: Wydawnictwa Geologiczne, 1988, s. ?. ISBN 83-220-0332-3.
  • W. Ryka, A. Maliszewska: Słownik petrograficzny. Warszawa: Wydawnictwa Geologiczne, 1982, s. ?. ISBN 83-220-0150-9.
  • W.I. Smirnow: Geologia złóż kopalin użytecznych. Warszawa: Wydawnictwa Geologiczne, 1986, s. ?.
  • E. Szełęg: Atlas minerałów i skał. Bielsko-Biała: Pascal, 2007, s. ?. ISBN 978-83-7513-138-3.
  • Tan, Li-ping: Major Pegmatite Deposits of New York State. New York State Museum Bulletin nr 408, 1966, s. ?.Sprawdź autora:1 oraz 2.
  • J. Żaba: Ilustrowana encyklopedia skał i minerałów. Chorzów: Videograf II, 2006, s. ?. ISBN 978-83-7183-385-7.


Media użyte na tej stronie

Pegmatyt 7.jpg
Autor: Kosioryt, Licencja: CC BY-SA 4.0
Pegmatyt z widocznymi zielonymi epidotami
Pegmatyt-szklary.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt hybrydalny (desilifikowany) z turmalinami i skaleniami. Szklary k. Ząbkowic Śląskich (kopalnia niklu "Marta"). Dolny Śląsk, Polska.
Pegmatyt-szklarska poreba-skalka tesciowej.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt z muskowitem. Szklarska Poręba - Skałka Teściowej.
Pegmatyt-michalkowa 2.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt anatektyczny z biotytem. Michałkowa, Góry Sowie, Dolny Śląsk, Polska.
Ortoklaz 2.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Mineralizacja pegmatytowa. Na zdjęciu widoczny kryształ ortoklazu, oraz kalcyt, klinochlor, fluoryt, zoisyt. kamieniołom Zimnik, okolice Jeleniej Góry, Dolny Sląsk.
Kalcyt pegmatytu.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Kalcyt (brązowy) z pegmatytów, powstały w procesach hydrotermalnych i pneumatolitowych związanych z działalnościa pegmatytową
La Chaume Croix de Saint André filons pegmatite.jpg
Autor: Arlette1, Licencja: CC BY-SA 4.0
La Chaume, Sables d'Olonne,Vendée, France: filons de pegmatite en croix dans la roche
Pegmatite23.jpg
Autor: Chmee2, Licencja: CC-BY-SA-3.0
Pegmatite
Pegmatyt-andaluzyt.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Andaluzyt (różowy) w pegmatycie anatektycznym Gór Sowich. Michałkowa, Dolny Śląsk, Polska.
Horblnendyt apatytowy 1.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Hornblendyt apatytowy z Bystrzycy Górnej na Dolnym Śląsku w Górach Sowich. Najstarsza skała magmowa w Polsce datowana na 1,2 Ga.
Pegmatyt-paszowice.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt z mikroklinem i fluorytem. Paszowice, Dolny Śląsk, Polska.
Pegmatyt-michalkowa 3.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt na kontakcie z migmatytem. Michałkowa, Góry Sowie, Dolny Śląsk, Polska.
Alkaline pegmatite.jpg
Autor: Autor nie został podany w rozpoznawalny automatycznie sposób. Założono, że to Zimbres (w oparciu o szablon praw autorskich)., Licencja: CC BY-SA 2.5

Alkaline pegmatite Description: weathered feldspar and blue corundum crystals. Sample size: 35 x 15 cm. Origin:Canaã alkaline massif, Rio de Janeiro, Brazil Date:24/03/2006 Author:Eurico Zimbres

Free for all use
Pegmatyt-wiry.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt hybrydalny (desilifikowany) z kopalni magnezytu w Witach na Dolnym Śląsku. Widoczne czerwone granaty.
Granit pismowy.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt anatektyczny z Michałkowej na Dolnym Śląsku. Widoczne przerosty pismowe kwarcu ze skaleniami.
Ametyst 12.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Szczotka ametystowa, można zauważyć w powiększeniu inkluzje rutylu, na wzór "włosów wenus". Pochodzenie - Minas Gerias, Brazylia.
Schorl lower silesia1.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Czarny turmalin - szerlit z Gór Sowich na Dolnym Śląsku. 3,5 x 0,7 cm
Ortoklaz 3.jpg
Autor: PIotr Sosnowski, Licencja: CC BY-SA 4.0
Mineralizacja pegmatytowa. Na zdjęciu widoczny kryształ ortoklazu, oraz kalcyt, klinochlor, fluoryt, zoisyt. kamieniołom Zimnik, okolice Jeleniej Góry, Dolny Sląsk.
Pegmatyt - szklarska poreba-huta.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt w aplogranicie, z epidotem, K-skaleniem i kwarcem. Szklarska Poręba-Huta.
Pegmatit mit Schörl.JPG
pegmatitisches Gestein mit Schörl (schwarzer Turmalin), Quarz, Alkalifeldspat und Muskovit
Przerosty pismowe.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Przerosty pismowe (granit napisowy, hebrajski,pismowy) - kop. Zimnik koło Jeleniej Góry na Dolnym Śląsku, Polska
Klinochlor2.jpg
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Klinochlor z pegmatytów w towarzystwie kalcytu, kwarcu oraz albitu, kamieniołom Zimnik, okolice Jeleniej Góry
PegmatiticGranite.JPG
Pegmatitic granite, Rock Creek Canyon, eastern Sierra Nevada, California.
Pegmatite body.JPG
Small (roadside) pegmatite body (light colour) in an outcrop of otherwise dark amphibolitic gneiss. Near Midsund, Møre og Romsdal, Norway. Age: Caledonian intrusives in Neoproterozoic metasediments.
Muskowit-Michalkowa.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Muskowit w pegmatycie anatektycznym z Gór Sowich. Michałkowa, Dolny Śląsk, Polska.
Pegmatyt-michalkowa 1.JPG
Autor: Piotr Sosnowski, Licencja: CC BY-SA 4.0
Pegmatyt anatektyczny z biotytem i muskowitem. Michałkowa, Góry Sowie, Dolny Śląsk,Polska.