Potencjał czynnościowy

A. Wyidealizowany obraz potencjału czynnościowego, ukazujący jego fazy. B. Rzeczywiste potencjały, rejestrowane różnymi technikami, odbiegają od wzorca

Potencjał czynnościowy, potencjał iglicowy – przejściowa zmiana potencjału błonowego komórki, związana z przekazywaniem informacji. Bodźcem do powstania potencjału czynnościowego jest zmiana potencjału elektrycznego w środowisku zewnętrznym komórki. Wędrujący potencjał czynnościowy nazywany jest impulsem nerwowym.

Faza depolaryzacji i repolaryzacji potencjału czynnościowego (iglica) trwa nie więcej niż 1 ms i osiąga maksymalnie wartości około +30 mV. Hiperpolaryzacja następcza może trwać kilkadziesiąt milisekund. W trakcie potencjału czynnościowego neurony stają się niepobudliwe, zaś później, podczas hiperpolaryzującego potencjału następczego ich pobudliwość jest zmniejszona. Zjawiska te nazywamy refrakcją bezwzględną i względną[1]. Ze względu na okres refrakcji bezwzględnej oraz refrakcji względnej komórki nerwowe człowieka nie mogą generować potencjałów czynnościowych z dowolną częstotliwością. Jednak w najbardziej sprzyjających okolicznościach częstotliwość potencjałów czynnościowych może dojść do 100 impulsów na sekundę[2].

Miejscem powstawania potencjału czynnościowego w komórce nerwowej jest wzgórek aksonowy, skąd potencjał iglicowy rozprzestrzenia się po powierzchni błony komórkowej aksonu. Generowaniem potencjałów czynnościowych rządzi zasada „wszystko albo nic”: do zapoczątkowania potencjału czynnościowego niezbędny jest bodziec o intensywności wystarczającej do zdepolaryzowania neuronu powyżej określonej wartości progowej; wszystkie potencjały czynnościowe w danej komórce osiągają tę samą amplitudę[3].

Przebieg potencjału czynnościowego w komórce nerwowej

Jeśli dokomórkowe prądy kationów przeważają nad odkomórkowymi, następuje depolaryzacja od poziomu potencjału spoczynkowego (ok. -70 mV) do potencjału krytycznego, czyli progowego (ok. -50 mV). Po osiągnięciu potencjału progowego następuje otwarcie bramkowanych elektrycznie (zależne od napięcia) kanałów przewodzących odkomórkowo kationy potasowe oraz kanałów przewodzących kationy sodowe do wnętrza komórki. Wskutek różnicy stężeń i potencjałów kationy sodowe szybko napływają do wnętrza komórki, niwelując różnicę potencjałów między środowiskiem zewnątrz- i wewnątrzkomórkowym do zera (depolaryzują błonę komórkową). Jest to początek potencjału iglicowego. Ze względu na dużą początkową różnicę stężeń, mimo wyrównania potencjałów, kationy sodowe napływają w dalszym ciągu do wnętrza komórki, powodując odwrotną polaryzację błony, tak zwany nadstrzał, dochodzącą do +35 mV. Następuje to stosunkowo szybko: w ciągu około 2 ms następuje już całkowita inaktywacja kanałów sodowych. Po rozpoczęciu aktywacji sodowej, w odpowiedzi na depolaryzację, następuje aktywacja potasowa, czyli otwarcie kanałów dla odkomórkowego prądu kationów potasowych. Powoduje to zmianę potencjału wnętrza komórki z powrotem na ujemny, czyli repolaryzację. W tym czasie nie jest możliwe ponowne pobudzenie komórki, jest to okres refrakcji bezwzględnej[4]. W czasie trwania potencjału iglicowego, a zwłaszcza pod koniec – proporcje kationów po obu stronach błony są odwrócone (Na+ wewnątrz, K+ na zewnątrz komórki). Przez cały czas trwania potencjału czynnościowego aktywna jest pompa sodowo-potasowa oraz inne układy transportujące jony. Poziom aktywności pompy sodowo-potasowej jest uzależniony od, między innymi, stężenia kationów sodowych we wnętrzu komórki. W czasie trwania potencjału iglicowego pompa działa z najwyższą możliwą prędkością. W ciągu kolejnych kilkudziesięciu milisekund przywraca proporcje kationów sodowych i potasowych po obu stronach błony komórkowej. Początkowo jednak błona jest jeszcze w stanie hiperpolaryzacji – różnica potencjałów przekracza wartość spoczynkową. Jest to okres refrakcji względnej, kiedy komórkę da się pobudzić, ale dużo większym bodźcem – ze względu na większą „odległość” od poziomu potencjału krytycznego. W pewnym stopniu, w różnych tkankach, w opisanych procesach biorą udział również inne jony, głównie chlorkowe (Cl-) oraz wapniowe (Ca2+).

Przypisy

  1. A. Longstaff, "Krótkie wykłady. Neurobiologia", 2006, s. 24 i 25. ISBN 978-83-01-13805-9
  2. Turlough FitzGerald MJ, Gregory Gruener, Estomih Mtui "Neuroanatomia", Elselvier Urban & Partner, Wrocław, 2008, ISBN 978-83-60290-54-5, s. 87.
  3. A. Longstaff, "Krótkie wykłady. Neurobiologia", 2006, s. 24–26. ISBN 978-83-01-13805-9
  4. W. Traczyk, A. Trzebski, "Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej", Wydawnictwo Lekarskie PZWL 2004, s. 56–60. ISBN 83-200-3020-X

Media użyte na tej stronie

Action potential vert.png
Autor: Artwork by Synaptidude at en.wikipedia, Licencja: CC-BY-SA-3.0
A. Schematic of an electrophysiological recording of an action potential showing the various phases which occur as the wave passes a point on a cell membrane. B. An actual action potential (blue trace) recorded from a mouse hippocampal pyramidal neuron. In this case, the action potential was stimulated by a prolonged pulse of current (brown trace; approx. 2 micro Amps) passed into the cell through the recording electrode. This method of stimulation distorts the AP compared to the schematic, in that the "real" action potential is sitting atop a voltage offset caused by the current pulse. Thus, for example, the "undershoot" is offset from the resting potential, although it would dip below rest if the offset were not present. The slow decline of the membrane potential back toward rest upon the termination of the current pulse reflects the long time constant of the neuronal membrane.