Pozytonowa tomografia emisyjna

Maksimum emisji (MIP) dla rozpadu związku 18F-FDG
Obraz mózgowia wykonany metodą PET

Pozytonowa tomografia emisyjna[1][2], tomografia emisyjna pozytonowa[3], emisyjna tomografia pozytonowa, PET (od ang. positron emission tomography) – technika obrazowania, w której (zamiast, jak w tomografii komputerowej, zewnętrznego źródła promieniowania rentgenowskiego lub radioaktywnego) rejestruje się promieniowanie powstające podczas anihilacji pozytonów (antyelektronów). Źródłem pozytonów jest podana pacjentowi substancja promieniotwórcza (głównie 11
C
, 68
Ga
, 18
F
i 99
Tc
)[4][5], ulegająca rozpadowi beta plus. Substancja ta zawiera izotopy promieniotwórcze o krótkim czasie połowicznego rozpadu, dzięki czemu większość promieniowania powstaje w trakcie badania, co ogranicza powstawanie uszkodzeń tkanek wywołanych promieniowaniem. Wiąże się także z koniecznością uruchomienia cyklotronu w pobliżu (krótki czas połowicznego rozpadu izotopów to także krótki maksymalny czas ich transportu), co znacząco podnosi koszty.

Obecnie praktycznie wszystkie dostępne skanery pozytonowej tomografii emisyjnej są urządzeniami hybrydowymi typu:

  • PET-CT, PET/CT, PET-TK – połączenie PET z wielorzędowym tomografem komputerowym
  • PET-MRI, PET/MRI – połączenie PET z rezonansem magnetycznym[6].
  • Dzięki hybrydyzacji tych urządzeń można jednoczasowo ocenić anatomię narządów pacjenta i zlokalizować precyzyjnie ewentualne ogniska gromadzenia radioznacznika PET[5].

Zasada działania

Powstające w rozpadzie promieniotwórczym pozytony, po przebyciu drogi kilku milimetrów, zderzają się z elektronami zawartymi w tkankach ciała, ulegając anihilacji. W wyniku anihilacji pary elektron–pozyton powstają dwa kwanty promieniowania elektromagnetycznego (fotony) o energii 511 keV każdy, poruszające się w przeciwnych kierunkach (pod kątem 180°). Fotony te rejestrowane są jednocześnie przez dwa z wielu detektorów ustawionych pod różnymi kątami w stosunku do ciała pacjenta (najczęściej w postaci pierścienia), w wyniku czego można określić dokładne miejsce powstania pozytonów. Informacje te rejestrowane w postaci cyfrowej na dysku komputera, pozwalają na konstrukcję obrazów będących przekrojami ciała pacjenta, analogicznych do obrazów uzyskiwanych w obrazowaniu metodą rezonansu magnetycznego.

W badaniu PET wykorzystuje się fakt, że określonym zmianom chorobowym towarzyszy zmiana metabolizmu niektórych związków chemicznych, np. cukrów[a]. Ponieważ energia w organizmie uzyskiwana jest głównie poprzez spalanie cukrów, to w badaniach wykorzystuje się deoksyglukozę znakowaną izotopem 18F o okresie połowicznego rozpadu około 110 minut. Najczęściej stosowanym preparatem jest 18
F
-FDG, ale także 68
Ga
-PSMA (ang. prostate-specific membrane antigen)[7] oraz cholina i octan znakowane 11
C/18
F
[5].

Schemat działania PET

Zastosowanie

PET stosuje się w medycynie nuklearnej głównie przy badaniach mózgu, serca, stanów zapalnych niejasnego pochodzenia oraz nowotworów. Umożliwia wczesną diagnozę choroby Huntingtona. Zastosowanie PET wpłynęło na znaczne poszerzenie wiedzy o etiologii i przebiegu w przypadku choroby Alzheimera, Parkinsona czy różnych postaci schizofrenii, padaczki.

Dzięki diagnostyce PET istnieje bardzo duże prawdopodobieństwo rozpoznania nowotworów (w około 90% badanych przypadków). Takiego wyniku nie daje się osiągnąć przy pomocy żadnej innej techniki obrazowania. PET daje także możliwość kontroli efektów terapeutycznych w trakcie leczenia chorób nowotworowych, np. za pomocą chemioterapii, hormonoterapii lub radioterapii.

PET-CT w Polsce

W 2005, w ramach Narodowego Programu Zwalczania Chorób Nowotworowych, rząd zatwierdził program budowy kilku dodatkowych ośrodków PET-CT, jednak ze względów finansowych wykonanie tego planu zostało zawieszone. W listopadzie 2006 wytypowanych zostało osiem ośrodków medycznych w Polsce, w których planowane jest zainstalowanie urządzeń PET lub nowocześniejszych PET-CT (skaner hybrydowy, połączenie skanera pozytonowej tomografii emisyjnej z tomografem komputerowym).

Lokalizacje ośrodków w Polsce (wykaz nie ma bezpośredniego związku z ww. programem rządowym;):

  1. województwo dolnośląskie
    • Wrocław (Dolnośląskie Centrum Medycyny Nuklearnej Affidea na terenie Uniwersyteckiego Szpitala Klinicznego)
    • Wrocław (pracownia PET-CT w Dolnośląskim Centrum Onkologii we Wrocławiu)
  2. województwo kujawsko-pomorskie
  3. województwo lubelskie
  4. województwo lubuskie
    • Gorzów Wlkp. (Starmedica - Centrum Medyczne w Gorzowie Wlkp.)
  5. województwo łódzkie
  6. województwo małopolskie
    • Kraków (Medyczne Centrum Diagnostyczne Voxel Ośrodek PET-TK-MR w Krakowie na terenie 5 Wojskowego Szpitala Klinicznego z Polikliniką SPZOZ)[12]
    • Kraków (Ośrodek Medycyny Nuklearnej PET - CT Kliniki Endokrynologii Szpitala Uniwersyteckiego)[13]
    • Kraków (Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie Oddział w Krakowie)
  7. województwo mazowieckie
  8. województwo opolskie
    • Opole (Zakład Medycyny Nuklearnej Voxel na terenie Opolskiego Centrum Onkologii w Opolu)[18]
  9. województwo podlaskie
    • Białystok ul. Żurawia 71A (Bioskaner - Laboratorium Obrazowania Molekularnego i Rozwoju Technologii Uniwersytetu Medycznego w Białymstoku Sp. z o.o.)
    • Białystok (Medyczne Centrum Diagnostyczne Voxel na terenie Białostockiego Centrum Onkologii)
  10. województwo podkarpackie
    • Brzozów (Medyczne Centrum Diagnostyczne Voxel na terenie Szpitala Specjalistycznego w Brzozowie)
  11. województwo pomorskie
    • Gdańsk (Uniwersyteckie Centrum Kliniczne)
  12. województwo śląskie
    • Katowice (Medyczne Centrum Diagnostyczne Voxel na terenie Uniwersyteckiego Centrum Okulistyki i Onkologii SPSK ŚUM)
    • Chorzów (Chorzowskie Centrum Pediatrii i Onkologii im. dr Edwarda Hankego)[19][20]
    • Gliwice (Narodowy Instytut Onkologii, im Marii Skłodowskiej Curie, Państwowy Instytut Badawczy, Oddział w Gliwicach)
  13. województwo świętokrzyskie
    • Kielce (Świętokrzyskie Centrum Onkologii)
  14. województwo warmińsko-mazurskie
    • Olsztyn (Affidea na terenie Wojewódzkiego Szpitala Specjalistycznego w Olsztynie)[21]
  15. województwo wielkopolskie
  16. województwo zachodniopomorskie
    • Szczecin (Newmedical - Centrum Diagnostyki Obrazowej w Szczecinie)

Zagrożenia

PET nie jest techniką inwazyjną, jednak jej użycie wystawia pacjenta na pewną dawkę promieniowania jonizującego. Dawka ta jest na poziomie akceptowalnym dla technik diagnostycznych i przez ponad 50 lat stosowania metody nie stwierdzono żadnych efektów ubocznych jej stosowania. Kobiety w ciąży lub karmiące piersią powinny poinformować o swoim stanie lekarza oraz personel obsługujący aparat[23].

Korzyści

Pozytonowa tomografia emisyjna pozwala ocenić nie tylko kształt organów i tkanek, ale także ich funkcjonowanie. Zmiany w tkankach można zatem wykryć wcześniej, niż pozwala na to tomografia komputerowa bądź rezonans magnetyczny.

Zobacz też

Uwagi

  1. Są jednostki chorobowe w których metabolizm jest zwiększony (np. nowotwory) w innych (np. choroby demencyjne) może być obniżony.
  2. Pracownia w Łodzi mieści się w budynkach kompleksu szpitala MSWiA, jednak formalnie do szpitala nie należy – jest własnością krakowskiej spółki Voxel S.A.

Przypisy

  1. Zarządzenie Nr 67/2011/DSOZ Prezesa Narodowego Funduszu Zdrowia, § 5.
  2. Pozytonowa tomografia emisyjna w onkologii z użyciem radiofarmaceutyków alternatywnych do 18F-fluorodeoksyglukozy, Onkologia w Praktyce Klinicznej
  3. tomografia emisyjna pozytonowa, [w:] Encyklopedia PWN [online] [dostęp 2015-01-23].
  4. Junzhong Liu i inni, Influence of Four Radiotracers in PET/CT on Diagnostic Accuracy for Prostate Cancer: A Bivariate Random-Effects Meta-Analysis, „Cellular Physiology and Biochemistry”, 39 (2), 2016, s. 467–480, DOI10.1159/000445639, PMID27383216 (ang.).
  5. a b c B. Małkowski, J. Siekiera, Z. Wolski, Nowe możliwości diagnostyczne raka stercza i raka nerki za pomocą pozytonowej emisyjnej tomografii i komputerowej tomografii (PET/CT), „Przegl. Urolog.”, 2012/4 (74) [dostęp 2020-10-12].
  6. Pozytonowa tomografia emisyjna PET, Portal onkologiczny zwrotnikRAKA.pl
  7. Cristian Udovicich i inni, 68Ga-prostate-specific membrane antigen-positron emission tomography/computed tomography in advanced prostate cancer: Current state and future trends, „Prostate International”, 5 (4), 2017, s. 125–129, DOI10.1016/j.prnil.2017.02.003, PMID29188197, PMCIDPMC5693469 (ang.).
  8. Medyczne centra diagnostyczne Voxel w Łodzi. Voxel S.A.. [dostęp 2015-02-17].
  9. Badania nowoczesnym tomografem w szpitalnej pralni. Gazeta Wyborcza Łódź. [dostęp 2010-05-05]. (pol.).
  10. W Łodzi otwarto pierwszą w regionie pracownię PET-CT. Serwis Nauka w Polsce - PAP SA, 2010-12-21. [dostęp 2012-09-09].
  11. Joanna Barczykowska: Pracownia PET w szpitalu Kopernika. Łódzka onkologia gra w pierwszej lidze. Dziennik Łódzki, 2013-11-18. [dostęp 2017-09-25].
  12. PET-CT-MR w Krakowie. [dostęp 2011-06-10]. [zarchiwizowane z tego adresu (2011-12-04)].
  13. Otwarto kolejną pracownię PET-CT w Krakowie. 2012-06-06. [dostęp 2012-10-11]. [zarchiwizowane z tego adresu (2015-06-04)]. (ang.).
  14. PET/SCYNTYGRAFIA. CNarodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy. [dostęp 2020-04-05].
  15. PET/CT Affidea. affidea.pl. [dostęp 2007-12-30].
  16. Centrum Onkologii rozpoczyna działalność. www.cozadzien.pl, 2014-09-08. [dostęp 2014-09-16].
  17. Pierwsze badania PET w RCO. onkologiaradom.pl, 2018-04-20. [dostęp 2018-04-24].
  18. MEDYCZNE CENTRA DIAGNOSTYCZNE VOXEL W OPOLU | Voxel S.A., www.voxel.pl [dostęp 2019-04-30].
  19. Chorzów: PET/CT już działa, wkrótce otwarcie nowego oddziału. www.rynekzdrowia.pl, 27-01-2011 15:07. [dostęp 2011-11-11].
  20. Pracownię PET - CT otwarto w Chorzowskim Centrum Pediatrii i Onkologii. www.tvp.pl, 14:20, 27.01.2011. [dostęp 2011-11-11]. [zarchiwizowane z tego adresu (2019-03-16)].
  21. Badanie PET zrobisz w Olsztynie. Zapłaci... pomorski NFZ. dziennikbaltycki.pl, 2011-10-14. [dostęp 2011-10-29].
  22. Affidea PET/CT. affidea.pl. [dostęp 2008-04-29].
  23. Positron Emission Tomography – Computed Tomography (PET/CT). What are the benefits vs. risks?. Radiological Society of North America, Inc. (RSNA). [dostęp 2010-01-23]. (ang.).

Linki zewnętrzne

Star of life.svg Przeczytaj ostrzeżenie dotyczące informacji medycznych i pokrewnych zamieszczonych w Wikipedii.

Media użyte na tej stronie

Star of life.svg

The Star of Life, medical symbol used on some ambulances.

Star of Life was designed/created by a National Highway Traffic Safety Administration (US Gov) employee and is thus in the public domain.
PET-schema.png
The image illustrates the processing principles of a positron emission tomograph (PET) commonly used in cancer diagnostics. It shows how during the annihilation process two photons are emitted in diametrically opposite directions. These photons are registered by the scanner as soon as they arrive at the detector ring. After the registration, the data is forwarded to a processing unit which decides if two registered events are selected as a so-called coincidence event. All coincidences are forwarded to the image processing unit where the final image data is produced via mathematical image reconstruction procedures.
Particles and antiparticles.svg
Autor: Anynobody, Licencja: CC BY-SA 3.0
Particles on the left from top to bottom; electron, proton, neutron; Antiparticles on the right top to bottom; positron, antiproton, antineutron
PET-MIPS-anim.gif
Maximum Intensity Projection (MIP) of a wholebody positron emission tomography (PET) acquisition of a 79 kg (174 lb) weighting female after intravenous injection of 371 MBq of 18F-FDG (one hour prior measurement). The investigation has been performed as part of a tumor diagnosis prior to applying a radiotherapy (tumor staging step). Besides normal accumulation of the tracer in the heart, bladder, kidneys and brain, liver metastases of a colorectal tumor are clearly visible within the abdominal region of the image.
PET-image.jpg
This is a transaxial slice of the brain of a 56 year old patient (male) taken with positron emission tomography (PET). The injected dose have been 282 MBq of 18F-FDG and the image was generated from a 20 minutes measurement with an ECAT Exact HR+ PET Scanner. Red areas show more accumulated tracer substance (18F-FDG) and blue areas are regions where low to no tracer have been accumulated.