Propagacja błędu

Wizualne przedstawienie propagacji błędu pomiarowego: wskutek pojawiania się kolejnych małych błędów w wielu pomiarach i zawężania liczby zmiennych, błąd rośnie[1]

Propagacja błędu, propagacja niepewności, przenoszenie się błędu – statystyczne zjawisko występujące w operacjach dokonywanych na wartościach obarczonych błędem, np. błędem pomiaru.

Propagacja błędu ma miejsce, kiedy mamy do czynienia z niedokładnością wielkości obliczonej na podstawie wielu pomiarów, na których dokonano pewnych działań algebraicznych. Błąd związany z każdą ze zmierzonych wartości wnosi swój wkład do błędu wielkości końcowej.

Gdy zmienne są wartościami pomiarów eksperymentalnych, obarczone są wówczas niepewnością (błędem) ze względu na ograniczenia pomiarowe (np. precyzję urządzenia).

Dla obliczenia niepewności wielkości fizycznej, która zależy od innych wielkości które można zmierzyć bezpośrednio, najpierw należy ocenić niepewności niezależnych wielkości. Niepewność jest zazwyczaj definiowana jako błąd bezwzględny. Niepewności mogą być również definiowane jako błąd względny (Δx)/x, zapisywany zazwyczaj jako wartość procentowa. Następnie należy stwierdzić, jaki wpływ mają te niepewności na niepewność ostatecznego wyniku.

Reguła pierwiastka kwadratowego w doświadczeniach zliczeniowych

Dla przypadkowych zdarzeń ze skończonym średnim prawdopodobieństwem, jeśli w czasie t została zliczona ilość to najlepsze przybliżenie średniej wielkości opisuje wzór

Ogólna reguła przenoszenia błędów dla wielkości nieskorelowanych

Jeśli jest dowolną funkcją od to

Pochodne cząstkowe

Dane:

Błąd bezwzględny
Wariancja

Przykładowe zastosowanie

Eksperyment polega na przeprowadzeniu pomiaru napięcia na oporniku oraz natężenia płynącego przezeń prądu, oznaczonych odpowiednio oraz celem określenia rezystancji oznaczonej poprzez która, zgodnie z prawem Ohma, jest równa

Znając wyniki pomiaru wraz z ich błędami, oraz można wyznaczyć błąd rezystancji następująco:

Przykładowe obliczenia

Poniżej przedstawiono obliczenie propagacji błędu dla funkcji arcus tangens, jako przykład użycia pochodnych cząstkowych do obliczenia propagacji niepewności.

Niech:

gdzie błędem bezwzględnym pomiaru Pochodna cząstkowa po jest równa:

Zatem wykorzystując propagację błędu można wyznaczyć:

gdzie jest bezwzględnym błędem propagowanym.

Kombinacje liniowe

Niech będzie zbiorem funkcji liniowych zmiennych: ze współczynnikami kombinacji

or

oraz niech oznacza macierz kowariancji dla

Zatem współczynniki macierzy kowariancji są opisane wzorem:

Jest to ogólna forma propagacji błędu ze zbioru pewnych zmiennych na zbiór innych zmiennych. Gdy błędy są nieskorelowane, wyrażenie upraszcza się do:

Nawet gdy błędy zmiennych są nieskorelowane, błędy są zawsze skorelowane

Wyrażenie ogólne dla pojedynczej funkcji przyjmuje prostszą formę:

Przykłady

Poniższa tabela ukazuje przykłady wariancji funkcji rzeczywistych zmiennych ze standardowym odchyleniem współczynnikiem korelacji oraz jednoznacznie określonymi stałymi

FunkcjaWariancja

Dla zmiennych nieskorelowanych termy kowariancji są równe zero. Wyrażenia dla funkcji złożonych mogą zostać przybliżone poprzez złożenie funkcji prostszych. Dla przykładu, poprzez mnożenie, zakładając brak korelacji danych:

Przypisy

  1. Objaśnienie rysunku na stronie 174. Rouaud, M., 2013. Probability, Statistics and Estimation Propagation of Uncertainties in Experimental Measurement.

Bibliografia

  • Philip R Bevington, D. Keith Robinson: Data Reduction and Error Analysis for the Physical Sciences. Wyd. 3. McGraw-Hill, 2002. ISBN 0-07-119926-8. (ang.)
  • Stuart L. Meyer: Data Analysis for Scientists and Engineers. Wiley, 1975. ISBN 0-471-59995-6. (ang.)
  • John R. Taylor: Wstęp do analizy błędu pomiarowego. PWN, 1999, s. 64–102. ISBN 83-01-12876-3.

Linki zewnętrzne

Media użyte na tej stronie

Marcheur-aleatoire.jpg
Autor: mathieu ROUAUD, Licencja: CC BY-SA 3.0
Wizualne przedstawienie propagacji błędu pomiarowego: wskutek pojawiania się kolejnych małych błędów w wielu pomiarach i zawężania liczby zmiennych, błąd rośnie