Równanie różniczkowe
Równanie różniczkowe – równanie określające zależność pomiędzy nieznaną funkcją a jej pochodnymi[1][2].
Rozwiązanie zwyczajnego równania różniczkowego polega na znalezieniu funkcji takiej, która spełnia to równanie (tzn. przekształca je w tożsamość ). Na przykład równanie różniczkowe ma ogólne rozwiązanie w postaci gdzie i są stałymi wyznaczanymi na podstawie warunków brzegowych.
Równania różniczkowe można podzielić na:
- równania różniczkowe zwyczajne – w których szukamy funkcji jednej zmiennej,
- równania różniczkowe cząstkowe – w których szukamy funkcji wielu zmiennych.
Istnieją metody rozwiązywania równań różniczkowych pewnych szczególnych typów, jednak wiele równań różniczkowych nie ma rozwiązań, które dałyby się wyrazić w postaci jawnej. W praktyce matematycznej często ważniejszą informacją od samej postaci rozwiązania jest informacja o jego istnieniu (gdyż nie każde równanie różniczkowe musi je mieć). W przypadku równań różniczkowych, o których wiadomo, że mają rozwiązanie, często (szczególnie w zastosowaniach) wystarczające jest znalezienie rozwiązania przybliżonego (np. stosując metodę aproksymacji). Obecnie prowadzi się wiele badań nad kolejnymi schematami rozwiązywania równań różniczkowych, gdyż mają one wiele zastosowań praktycznych. Przy wielu uniwersytetach powstają specjalne katedry równań różniczkowych zajmujące się praktycznie tylko szukaniem rozwiązań kolejnych przełomowych równań.
Oprogramowanie
Istnieje oprogramowanie, które może rozwiązać równania różniczkowe:
Przykłady równań różniczkowych w różnych dziedzinach
- równania Cauchy’ego-Riemanna w analizie zespolonej
- równania Einsteina-Infelda-Hoffmanna
- równania Hamiltona w mechanice klasycznej
- równania Maxwella
- równania opisujące konwekcję swobodną w termodynamice
- równania opisujące zasady dynamiki Newtona
- równania związane z czasem połowicznego rozpadu izotopów w fizyce jądrowej
- równanie Einsteina w teorii względności
- równanie falowe
- równanie Naviera-Stokesa w mechanice płynów
- równanie Poissona-Boltzmanna
- równanie przewodnictwa cieplnego w termodynamice
- równanie Laplace’a opisujące harmoniki
- równanie Poissona
- równanie Schrödingera w mechanice kwantowej
Zobacz też
- metoda Eulera
- rachunek różniczkowy i całkowy
- równanie różniczkowe zupełne
- zagadnienie Cauchy’ego (zagadnienie początkowe)
- Hydrointegrator
Przypisy
- ↑ W.I. Smirnow, Matematyka wyższa, tom II, Państwowe Wydawnictwo Naukowe, Warszawa 1966.
- ↑ Równania różniczkowe, [w:] Encyklopedia PWN [online] [dostęp 2021-07-29] .
- ↑ dsolve - Maple Programming Help, www.maplesoft.com [dostęp 2020-05-12] .
- ↑ Basic Algebra and Calculus — Sage Tutorial v9.0, doc.sagemath.org [dostęp 2020-05-12] .
- ↑ http://www-fourier.ujf-grenoble.fr/~parisse/giac/cascmd_en.pdf
Linki zewnętrzne
- Grant Sanderson, Differential equations, kanał 3blue1brown na YouTube, [dostęp 2021-03-15] – seria filmów o podstawach równań różniczkowych.