Skończenie generowana grupa przemienna
Skończenie generowana grupa przemienna – grupa przemienna (abelowa), której zbiór generatorów jest skończony. W szczególności, każda skończona grupa abelowa jest skończenie generowana.
Skończenie generowane grupy mają prostą strukturę i mogą być całkowicie sklasyfikowane, jak wyjaśniono niżej.
Definicja
Niech będzie przemienna. Grupę tę nazywa się skończenie generowaną, jeżeli istnieje skończenie wiele takich elementów że każdy może być zapisany jako
gdzie są całkowite. Wtedy mówi się, że zbiór jest zbiorem generującym (generatorów) lub że generują
Przykłady
- Liczby całkowite są skończenie generowaną grupą abelową,
- liczby całkowite modulo n są skończenie generowanymi grupami przemiennymi,
- dowolna suma prosta skończenie wielu skończenie generowanych grup przemiennych także jest skończenie generowaną grupą przemienną
Powyższa lista wyczerpuje przykłady podgrup skończenie generowanych.
- Grupa liczb wymiernych nie jest skończenie generowana: niech będą liczbami wymiernymi, a liczbą naturalną względnie pierwszą z mianownikami liczb wtedy przedstawienie elementu za pomocą okazuje się niemożliwe.
Klasyfikacja
Twierdzenie o klasyfikacji skończenie generowanych grup abelowych (Frobenius i Stickelberger, 1878), będące szczególnym przypadkiem twierdzenia strukturalnego dla skończenie generowanych modułów nad dziedziną ideałów głównych (twierdzenia Frobeniusa o równoważności macierzy nad pierścieniem liczb całkowitych)[1], może być wyrażone na dwa niżej wymienione sposoby (podobnie jak dla d.i.g.). Jego szczególnym przypadkiem jest twierdzenie o klasyfikacji skończonych grup przemiennych. Wynik ten ma zastosowanie praktyczne w informatyce: obliczenia w poszczególnych grupach rozkładu mogą być wykonywane równolegle (tzn. niezależnie od siebie).
Rozkład na czynniki pierwsze
Sformułowanie rozkładu na czynniki pierwsze mówi, że każda skończenie generowana grupa abelowa jest izomorficzna z sumą prostą cyklicznych grup o rzędach będącymi potęgami liczb pierwszych oraz nieskończonych grup cyklicznych. To jest, każda taka grupa jest izomorficzna z grupą postaci
gdzie a liczby są (niekoniecznie różnymi) potęgami liczb pierwszych. W szczególności jest skończona wtedy i tylko wtedy, gdy Wartości są wyznaczone jednoznacznie (co do porządku) przez
Rozkład na czynniki niezmiennicze
Dowolna skończenie generowana grupa przemienna może być zapisana także jako iloczyn prosty postaci
gdzie dzieli które dzieli i tak dalej, aż do Znowu, liczby są jednoznacznie wyznaczone przez (tutaj wraz z jednoznacznym porządkiem) i są nazywane czynnikami niezmienniczymi, tzn. dwie skończenie generowane grupy abelowe są izomorficzne wtedy i tylko wtedy, gdy mają jednakowe ciągi czynników niezmienniczych; liczba jest równa randze grupy abelowej.
Równoważność
Powyższe stwierdzenia są równoważne na mocy chińskiego twierdzenia o resztach, które mówi w tym wypadku, że jest izomorficzna z iloczynem prostym przez wtedy i tylko wtedy, gdy oraz są względnie pierwsze i
Wnioski
Wyrażone inaczej twierdzenie o klasyfikacji mówi, że skończenie generowana grupa przemienna jest sumą prostą grupy abelowej wolnej skończonej rangi i skończonej grupy przemiennej, z których każda jest wyznaczona jednoznacznie co do izomorfizmu. Skończona grupa abelowa jest podgrupą torsyjną Ranga jest określona jako ranga beztorsyjnej części tzn. jest to liczba w powyższych wzorach.
Wnioskiem płynącym z twierdzenia o klasyfikacji jest, że każda skończenie generowana beztorsyjna grupa przemienna jest wolną grupą abelową. Warunek skończonego generowania jest tu kluczowy: jest beztorsyjna, ale nie jest wolna grupą abelową.
Każda podgrupa i grupa ilorazowa skończenie generowanej grupy abelowej jest znowu skończenie generowaną grupą abelową. Skończenie generowane grupy przemienne, wraz z homomorfizmami grupowymi stanowią kategorię przemienną, będącą podkategorią Serre’a kategorii grup abelowych.
Nieskończenie generowane grupy przemienne
Należy mieć na uwadze, że nie każda grupa przemienna skończonej rangi jest skończenie generowana; grupa pierwszej rangi jest jednym z przykładów, kolejnym jest grupa rangi zerowej będąca sumą prostą przeliczalnie wielu egzemplarzy
Zobacz też
- twierdzenie Jordana-Höldera jako uogólnienie na grupy nieprzemienne
Przypisy
- ↑ L. Fuchs, Infinite abelian groups, Academic Press 1970, tw. III.15.2.