Statystyka (funkcja)
Statystyka – funkcja mierzalna określona na przestrzeni statystycznej, służąca do wyodrębnienia pewnych istotnych cech danych doświadczalnych. Jest szczególnym przypadkiem miary rozkładu. Pojęcie statystyki w statystyce matematycznej jest odpowiednikiem zmiennej losowej w rachunku prawdopodobieństwa[1].
Statystyki są często estymatorami parametrów rozkładu zmiennej losowej w populacji generalnej.
Definicja
Niech będzie przestrzenią statystyczną, gdzie
jest rodziną miar probabilistycznych określonych na σ-ciele podzbiorów zbioru indeksowaną parametrem Niech dalej będzie przestrzenią mierzalną. Funkcję mierzalną nazywamy statystyką. Zbiór jest nazywany przestrzenią prób.
Własności
- Jeśli to statystykę nazywamy statystyką o wartościach rzeczywistych.
- Jeśli to statystykę nazywamy statystyką o wartościach wektorowych.
Przykłady
Statystyka swobodna
Statystyka jest statystyką swobodną ze względu na wartość oczekiwaną, gdy istnieje i nie zależy od Wspólną dla wartość oczekiwaną oznaczamy i nazywamy wartością oczekiwaną statystyki
Statystyka dostateczna
Definicja i własności
- σ-ciało dostateczne
σ-podciało σ-ciała jest dostateczne, gdy dla każdego istnieje wersja prawdopodobieństwa warunkowego taka sama dla wszystkich miar z rodziny
- Statystyka dostateczna
Statystykę nazywamy dostateczną, jeżeli σ-podciało jest dostateczne.
- Twierdzenie
Niech statystyka będzie statystyką o wartościach wektorowych. jest statystyką dostateczną dla rodziny lub dla jeżeli dla każdej wartości rozkład warunkowy nie zależy od
Przypadek ogólny opisuje poniższe twierdzenie (zwane twierdzeniem o faktoryzacji lub twierdzeniem Neymana):
- Twierdzenie
Niech będzie przestrzenią statystyczną dominowaną. Statystyka jest dostateczna wtedy i tylko wtedy, gdy funkcje gęstości dają się przedstawić w postaci:
gdzie:
- jest funkcją -mierzalną,
- funkcje są -mierzalne.
Minimalna statystyka dostateczna
Statystykę dostateczną nazywamy minimalną statystyką dostateczną, jeżeli dla każdej statystyki dostatecznej istnieje funkcja taka, że
Zobacz też
- miara rozkładu
- przegląd zagadnień z zakresu statystyki
Przypisy
- ↑ J.R. Barra, Matematyczne podstawy statystyki, s. 11–12.
Bibliografia
- Jean René Barra, Elżbieta Pleszczyńska, Maria Wesołowska: Matematyczne podstawy statystyki. Warszawa: Państwowe Wydawnictwo Naukowe, 1982. ISBN 83-01-02847-5.
- Ryszard Zieliński: Siedem wykładów wprowadzających do statystyki matematycznej. Warszawa: 2004. http://www.impan.gov.pl/~rziel/7ALL.pdf (dostęp: 21 maja 2008)