Symbol Legendre’a
Symbol Legendre’a – funkcja ściśle multiplikatywna stosowana w teorii liczb, oznaczana lub [1][2][3].
Wprowadzony w 1798 przez Legendre'a[4]. Jego uogólnieniem jest symbol Jacobiego.
Definicja
Niech będzie liczbą pierwszą. Liczbę niebędącą wielokrotnością nazwiemy resztą kwadratową modulo , jeśli istnieje liczba całkowita taka, że fakt ten oznaczymy Jeśli taka liczba nie istnieje, liczbę nazywamy nieresztą kwadratową modulo [1], w artykule oznaczamy to jako Wielokrotności liczby nie zaliczamy ani do reszt ani do niereszt[2].
Czasami za dziedzinę funkcji nie przyjmuje się wielokrotności [1][2][3].
Własności
- Jeśli to [2].
- Kryterium Eulera jest użyteczne do obliczania wartości symbolu oraz jest używane do dowodzenia innych własności:
- Symbol Legendre'a jest funkcją ściśle multiplikatywną licznika: Ta własność jest wnioskiem z kryterium Eulera[1][2][3].
- Najważniejszą własnością jest prawo wzajemności reszt kwadratowych, zwane czasami theorema fundamentale (twierdzenie podstawowe) lub theorema aurerum (twierdzenie złote)[1][2][5]:
- Tę własność, będącą wnioskiem z kryterium Eulera, nazywa się I uzupełnieniem prawa wzajemności[1][2]:
- Istnieje również II uzupełnienie prawa wzajemności[1]:
Tabela wartości
Tabela przedstawia wartości funkcji dla i [6].
a p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 |
5 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 |
7 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 |
13 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 |
17 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 |
19 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 0 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 |
23 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 0 | 1 | 1 | 1 | 1 | −1 | 1 | −1 |
29 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 0 | 1 |
31 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 |
37 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 |
41 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | −1 |
43 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 |
47 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 | −1 |
53 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 |
59 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 |
61 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 |
67 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 |
71 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 |
73 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 |
79 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 |
83 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 |
89 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | −1 | −1 |
97 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 |
101 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 |
103 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 |
107 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 |
109 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 |
113 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 |
127 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 |
Przypisy
- ↑ a b c d e f g h Adam Neugebauer , Matematyka olimpijska. 1, Algebra i teoria liczb, wyd. 2, Kraków: Wydawnictwo Szkolne OMEGA, 2018, s. 204-211, ISBN 978-83-7267-710-5, OCLC 1055646686 [dostęp 2022-08-14] .
- ↑ a b c d e f g h Władysław Narkiewicz , Teoria liczb, wyd. 3, Warszawa: Wydawnictwo Naukowe PWN, 2003, s. 61, 63-65, 139, 169, ISBN 83-01-14015-1, OCLC 749285993 [dostęp 2022-08-14] .
- ↑ a b c d Eric W. Weisstein , Legendre Symbol, mathworld.wolfram.com [dostęp 2022-08-14] (ang.).
- ↑ A.M. (Adrien Marie) Legendre , Essai sur la théorie des nombres, Paris, Duprat, 1798 [dostęp 2022-08-14] .
- ↑ Eric W. Weisstein , Quadratic Reciprocity Theorem, mathworld.wolfram.com [dostęp 2022-08-14] (ang.).
- ↑ Legendre Symbol(LS) Calculator, www.mymathtables.com [dostęp 2022-08-14] .