Teoria kwasów i zasad Brønsteda

W reakcji odwracalnej cyklicznie dochodzi do przenoszeia protonu z kwasu na zasadę. Kwasami są tu CH
3
COOH
oraz H
3
O+
, zaś zasadami CH
3
COO
oraz H
2
O
.

Teoria Brønsteda (także teoria Brønsteda-Lowry'ego, teoria kwasów i zasad Brønsteda) − teoria, która została sformułowana w 1923 roku niezależnie od siebie przez Johannesa Brønsteda i Thomasa Martina Lowry'ego[1][2], w myśl której kwasem jest substancja mogąca odłączać ze swojej cząsteczki jon wodorowy (proton), natomiast zasadą substancja, która przyłącza protony. Stąd kwas jest donorem protonu (protonodonorem), a zasada akceptorem protonu (protonoakceptorem). Kwas po odłączeniu protonu staje się sprzężoną zasadą, natomiast zasada pobierając proton staje się sprzężonym kwasem:

kwas + zasada ⇌ sprzężona zasada + sprzężony kwas

Ogólny zapis równowagi kwasowo-zasadowej według teorii Brønsteda można przedstawić następująco:

HA + B ⇌ A + HB+

gdzie:

HA − kwas
B − zasada
A − sprzężona zasada
HB+ − sprzężony kwas

Przykłady:

  • HF + H
    2
    O ⇌ F
    + H
    3
    O+
    − woda zachowuje się jak zasada.
  • NH
    3
    + H
    2
    O ⇌ NH+
    4
    + OH
    − woda zachowuje się jak kwas.
  • HSO
    3
    + H
    2
    O ⇌ H
    2
    SO
    3
    + OH
    − woda zachowuje się jak kwas.
  • CH
    3
    COOH
    + H
    2
    O ⇌ CH
    3
    COO
    + H
    3
    O+
    − woda zachowuje się jak zasada

Amfiprotyczność

Amifiprotyczna natura wody

Ponadto, zgodnie z teorią Brønsteda, podczas autodysocjacji wody każda z cząsteczek H
2
O
może być zarówno donorem, jak i akceptorem protonu:

H
2
O + H
2
O ⇌ H
3
O+
+ OH
− woda zachowuje się zarówno jak kwas, jak i zasada, czyli jest związkiem amfoterycznym, dokładniej amfiprotycznym.

Autodysocjacji ulega też wiele innych rozpuszczalników protonowych i stosuje się dla nich analogiczną interpretację w kontekście teorii kwasów i zasad Brønsteda[3].

Im silniejszy jest kwas tym słabsza jest sprzężona z nim zasada[4].

Zobacz też

Przypisy

  1. R.H. Petrucci, W.S. Harwood, F.G. Herring, General Chemistry, wyd. 8, Prentice-Hall 2002, s. 666
  2. G.L. Miessler, D.A. Tarr, Inorganic Chemistry, wyd. 2, Prentice-Hall 1998, s. 154
  3. Adam Bielański, Podstawy chemii nieorganicznej, wyd. 5, Warszawa: PWN, 2002, s. 359, ISBN 83-01-13654-5.
  4. Maria Litwin i inni, To jest chemia 1 : chemia ogólna i nieorganiczna : podręcznik dla liceum ogólnokształcącego i technikum : zakres rozszerzony, Warszawa: Nowa Era, 2019, ISBN 978-83-267-3566-0, OCLC 1150452700 [dostęp 2022-02-27].

Media użyte na tej stronie

Acetic-acid-dissociation-3D-balls.png

Ball-and-stick model of the dissociation of acetic acid to acetate. A water molecule is protonated to form a hydronium ion in the process. The acidic proton that is transferred from acetic acid to water is labelled in green.

Image generated in Accelrys DS Visualizer.
Autoprotolyse eau.svg
Autoprotolysis of water, giving hydroxide and hydronium ions.