Test dla wariancji
Test dla wariancji – test statystyczny służący do weryfikacji hipotez statystycznych dotyczących wartości wariancji w populacji generalnej lub też do porównania wartości wariancji w dwóch lub kilku populacjach – na podstawie znajomości wartości badanej cechy w losowej próbie (lub w kilku próbach).
Rozstrzygnięcie pytań dotyczących wariancji jest ważne m.in. dlatego, że wiele testów służących do porównania wartości średnich w dwóch lub kilku populacjach wymaga przyjęcia założenia o równości wariancji w tych populacjach (tak zwane założenie o jednorodności wariancji). Ponadto wariancja może być miernikiem dokładności w procesie pomiarowym lub produkcyjnym (zbyt duża wariancja wyników pomiaru może na przykład świadczyć o uszkodzeniu lub rozregulowaniu aparatury lub urządzeń).
Struktura i podział testów
Hipotezy dotyczące wariancji testuje się zgodnie z ogólnymi zasadami testowania hipotez statystycznych: formułujemy hipotezy, zakładamy poziom istotności – dopuszczalną wartość błędu pierwszego rodzaju (tj. prawdopodobieństwo odrzucenia prawdziwej hipotezy zerowej) i na podstawie danych z próby wyznaczamy wartość statystyki testowej, po czym porównujemy ją z wartościami krytycznymi odczytanymi z tablic odpowiedniego rozkładu teoretycznego. Przy konstrukcji wszystkich omawianych niżej testów przyjmowane jest założenie, że badane cechy mają w populacjach generalnych rozkład normalny.
- Postać stosowanej statystyki testowej zależy od kilku czynników:
- czy badamy hipotezę dotyczącą jednej, dwóch czy wielu wariancji?
- czy porównujemy próby niezależne, czy zależne (skorelowane, powiązane)?
- jaka jest liczebność próby (prób)?. Przyjmuje się na ogół (dość arbitralnie), że próba jest duża, gdy jej liczebność przekracza 30 obserwacji (można wtedy zakładać, że statystyki mają rozkład normalny – patrz centralne twierdzenie graniczne). W przypadku przeciwnym – mamy do czynienia z próbami małymi.
Poniżej przedstawiono w skrócie kilka testów najczęściej stosowanych w poszczególnych sytuacjach.
Testy dla jednej wariancji
Porównujemy wariancję w populacji z „wzorcową” wartością
Hipotezy mają postać:
- postać hipotezy alternatywnej zależy od sformułowania zagadnienia:
(1) |
albo
(2) |
albo też
(3) |
Postać statystyki i dalszy przebieg testu zależy od rozmiaru próby.
Próby małe
Wyznaczamy wartość statystyki
gdzie:
- jest wariancją z próby,
- jest liczebnością próby.
Statystyka ta ma przy założeniu prawdziwości hipotezy zerowej rozkład chi-kwadrat z stopniami swobody. Wartość krytyczną odczytujemy z tablic rozkładu chi-kwadrat dla stopni swobody oraz:
- dla poziomu istotności gdy hipoteza alternatywna ma postać (1),
- dla poziomu istotności gdy hipoteza alternatywna ma postać (2),
- gdy hipoteza alternatywna ma postać (3) odczytujemy dwie wartości krytyczne:
- dla poziomu istotności oraz
- dla poziomu istotności
Obszar krytyczny:
- w przypadku (1) obszar krytyczny jest prawostronny, czyli
- w przypadku (2) obszar krytyczny jest lewostronny, czyli
- w przypadku (3) obszar krytyczny jest obustronny, tzn.
Jeżeli wyznaczona wartość statystyki nie należy do obszaru krytycznego to nie ma podstaw do odrzucenia hipotezy zerowej. Jeżeli wyznaczona wartość statystyki należy do obszaru krytycznego to hipotezę zerową odrzucamy na korzyść hipotezy alternatywnej.
Próby duże
Dla liczebności próby możemy przekształcić wyznaczoną w poprzednim punkcie statystykę chi-kwadrat w statystykę o rozkładzie normalnym obliczając:
Nie oznacza to, że nie można stosować nadal statystyk dla małych prób. Są one nadal dokładniejsze, wymagają jednak komputerowego obliczania rozkładu, gdyż tablice na ogół nie sięgają tak daleko.
W powyższym wzorze oraz oznaczają statystykę chi-kwadrat i jej liczbę stopni swobody wyznaczone tak, jak w poprzednim paragrafie (dla prób małych).
Wartości krytyczne znajdujemy z tablic dystrybuanty rozkładu normalnego. Jeżeli jest dystrybuantą standardowego rozkładu normalnego, a – funkcją odwrotną do dystrybuanty, natomiast – założonym poziomem istotności – to odczytujemy:
- dla przypadku (1)
- w przypadku (2)
- w przypadku (3) mamy 2 wartości graniczne:
- oraz
Dalszy przebieg testu i wnioski – jak poprzednio.
Testy dla dwóch wariancji
Mamy tu do czynienia z dwiema próbami o liczebnościach i znamy też „wariancje z próby” (estymatory wariancji) i – testujemy hipotezę, że próby te pochodzą z populacji o jednakowych wariancjach. Postać hipotez:
- postać hipotezy alternatywnej zależy od sformułowania zagadnienia:
(4) |
albo
(5) |
albo też
(6) |
Testy dla dwóch prób niezależnych
Próby małe
W tym przypadku można wykorzystać kilka testów:
Test F (Fishera)
Niech i będą próbami statystycznymi z rozkładu normalnego (test nie jest odporny na naruszenia tego założenia[1][2]), ze średnimi próbkowymi odpowiednio:
Niech
będą wariancjami próbkowymi. Wtedy test statystyczny
ma rozkład F Snedecora z stopniami swobody jeśli hipoteza zerowa o równości wariancji jest prawdziwa. Z tablic tego rozkładu, dla testu prawostronnego, odczytuje się wartość krytyczną:
Jeżeli stosuje się test lewostronny, to najprościej jest zamienić miejscami próby 1 i 2.
W przypadku testu obustronnego wyznacza się
oraz drugą wartość graniczną ze wzoru:
Test t-Studenta
(dwie małe próby o równych liczebnościach)
Stosujemy statystykę
( jest tutaj wspólną liczebnością obu prób).
Statystyka ta ma rozkład Studenta o stopniach swobody.
Test t-Studenta stosujemy w przypadku, gdy próby pochodzą z populacji o rozkładzie normalnym i gdy nie znamy wariancji.
Test Linka
Gdy znane są jedynie rozstępy i obu prób, wtedy wyznaczamy statystykę
przy czym w liczniku powinna być większa wartość (hipoteza ma postać (4)). Statystykę tę porównujemy z wartością krytyczną odczytaną ze specjalnych tablic dla testu Linka – patrz np. (Zieliński, 1972).
Próby duże
W tym przypadku można wykorzystać statystykę z o rozkładzie normalnym:
i porównać jej wartość z wartościami granicznymi wyznaczonymi z tablicy standaryzowanego rozkładu normalnego w dokładnie taki sam sposób, jak opisano to dla testu dla jednej wariancji i dużej próby.
Tak jak poprzednio, nie oznacza to, że nie można stosować nadal statystyk dla małych prób. Są one nadal dokładniejsze, wymagają jednak komputerowego obliczania rozkładu, gdyż tablice na ogół nie sięgają tak daleko.
Testy dla dwóch prób zależnych
Przypadek taki zachodzi np. gdy badamy ten sam zbiór obiektów w dwóch różnych sytuacjach (w różnych warunkach) – wtedy na ogół liczebności prób są jednakowe
Test Morgana dla prób małych
Wyznaczamy statystykę o rozkładzie t-Studenta:
gdzie jest wspólną liczebnością prób, a – współczynnikiem korelacji Pearsona, który jest miarą korelacji pomiędzy wynikami w próbie 1 i próbie 2. Tę wartość statystyki t porównujemy z wartością krytyczną (lub 2 wartościami krytycznymi) odczytanymi z tablic rozkładu t-Studenta dla stopni swobody.
Test Morgana dla prób dużych
Test przebiega podobnie, z tą różnicą, że wartości graniczne można odczytać z tablicy rozkładu normalnego (bo dla dużych wartości stopni swobody rozkład t-Studenta zmierza asymptotycznie do rozkładu normalnego).
Testy dla wielu wariancji
Mamy k prób. Hipotezy mają postać:
- „nie ” (nie wszystkie wariancje są równe)
Próby niezależne
Test Bartletta
Gdy liczebności prób są różne – stosujemy test Bartletta, oparty na statystyce chi-kwadrat:
przy czym we wzorze tym:
- są liczebnościami poszczególnych prób,
- – wariancjami z próby,
- – wariancjami z próby,
Obliczona wartość jest porównywana z wartością krytyczną wyznaczoną z tablic rozkładu chi-kwadrat dla stopni swobody. Obszar krytyczny jest zawsze prawostronny (zbyt duże wartości statystyki świadczą o niejednorodności wariancji).
Aby można było stosować test Bartletta – musi być spełnione założenie, że liczebności prób nie są skrajnie małe, tzn. że dla każdego
Gdy mamy k prób równolicznych, każda o liczebności n – możemy stosować też inne testy (prostsze rachunkowo):
Test Hartleya
Mamy prób o jednakowej liczebności Obliczamy wartość statystyki zgodnie ze wzorem:
gdzie:
- – estymatory wariancji dla każdej z prób
- jest największą spośród wariancji
- jest najmniejszą spośród wariancji
Wartość statystyki musi być porównywana z wartościami krytycznymi odczytywanymi z tablic specjalnie skonstruowanych dla tego testu (p. Zieliński 1972). Test Hartleya ma zawsze prawostronny obszar krytyczny.
Test Cadwella
Jest to test do badania hipotezy o jednorodności wariancji dla k prób niezależnych i równolicznych (o liczebności n każda). Test ten jest oparty na wartości rozstępów, wyznaczamy mianowicie wartość statystyki:
(stosunek największego do najmniejszego rozstępu w badanych próbach) i porównujemy tę wartość z wartością krytyczną odczytaną z tablic specjalnie dostosowanych do tego testu, która zależy od poziomu istotności liczby prób k i ich liczebności n.
Test ten, tak jak poprzednie, jest zawsze prawostronny.
Próby zależne
Test Patnaika
Mamy prób zależnych o liczebności każda. Liczebności powinny spełniać warunek Test oparty jest na wartościach rozstępów poszczególnych prób. Wyznaczamy dwie wartości:
- średni rozstęp
- oraz
- „rozstęp rozstępów”
po czym porównujemy wartość stosunku z odpowiednią wartością krytyczną Zarówno ta wartość krytyczna, jak i stała musi być odczytana z tablic specjalnie przygotowanych dla tego testu. Obszar krytyczny testu jest prawostronny, tj. gdy – wnioskujemy, że wariancje w porównywanych populacjach nie są jednorodne. W takim przypadku – można stosować ten test sekwencyjnie (w kolejnych podgrupach).
Zobacz też
Przypisy
- ↑ G.E.P. BOX , Non-Normality and Tests on Variances, „Biometrika”, 40 (3–4), 1953, s. 318–335, DOI: 10.1093/biomet/40.3-4.318, ISSN 0006-3444, JSTOR: 2333350 [dostęp 2017-02-19] (ang.).
- ↑ Carol A. Markowski , Edward P. Markowski , Conditions for the Effectiveness of a Preliminary Test of Variance, „The American Statistician”, 44 (4), 1990, s. 322–326, DOI: 10.2307/2684360, JSTOR: 2684360 [dostęp 2017-02-19] .
Bibliografia
- Zieliński R., „Tablice statystyczne”, PWN, Warszawa 1972
- Barańska Z., „Podstawy metod statystycznych dla psychologów”, Wyd. Uniw. Gdańskiego, Gdańsk 2000, ISBN 83-7017-839-1 (m.in. cytowane są tablice dla testów Patnaika i Cadwella)