Theorema Egregium
![](http://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Mercator-proj.png/220px-Mercator-proj.png)
Twierdzenie wyborne (łac. Theorema Egregium) – twierdzenie, którego dowiódł Carl Friedrich Gauss w 1827[1].
Treść twierdzenia i wnioski
Jeśli jakąkolwiek powierzchnię w odwzorujemy izometrycznie na inną, to krzywizna zostanie zachowana[2]. To znaczy, że krzywizna jest niezmiennikiem przekształcenia izometrycznego, tj. takiego które nie zmienia odległości dowolnej pary punktów na przekształcanej powierzchni.
Z twierdzenia wynika, że żadnego obszaru sfery nie można spłaszczyć zachowując jednocześnie odległości punktów, ponieważ krzywizna sfery (dodatnia) jest różna od krzywizny płaszczyzny (równej zero).
Theorema Egregium zmieniła sposób patrzenia na geometrię, przyczyniła się do powstania geometrii różniczkowej i dała podstawy pod współczesną kosmologię oraz ogólną teorię względności[1].
Przypisy
Linki zewnętrzne
- Eric W. Weisstein , Gauss's Theorema Egregium, [w:] MathWorld [online], Wolfram Research [dostęp 2020-12-12] (ang.).
Media użyte na tej stronie
Autor: Modified by Jecowa, Licencja: CC-BY-SA-3.0
World map in Mercator style projection.