Trójkąt

Trójkąt
Ilustracja
Liczba boków

3

Liczba przekątnych

0

Symbol Schläfliego

{3} (trójkąt równoboczny)

Kąt wewnętrzny

60° (trójkąt równoboczny)

Trójkątwielokąt o trzech bokach[1]. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów).

Odcinki tworzące łamaną nazywamy bokami, punkty wspólne sąsiednich boków nazywamy wierzchołkami trójkąta[1][2]. Każdy trójkąt jest jednoznacznie wyznaczony przez swoje wierzchołki.

Często dla wygody jeden z boków trójkąta nazywa się podstawą, a pozostałe – ramionami[1].

W każdym trójkącie suma miar kątów wewnętrznych między bokami wynosi 180°[1], zaś długości boków muszą spełniać pewne zależności (patrz dalej).

Rodzaje

A, B, C – wierzchołki
a, b, c – boki
α, β, γ – kąty

Trójkąty można dzielić ze względu na długości ich boków oraz ze względu na miary ich kątów.

Przy podziale ze względu na boki wyróżnia się:

równobocznyrównoramiennyróżnoboczny
równobocznyrównoramiennyróżnoboczny

Przy podziale ze względu na kąty wyróżnia się:

  • trójkąt ostrokątny, którego wszystkie kąty wewnętrzne są ostre[1];
  • trójkąt prostokątny to taki, w którym jeden z kątów wewnętrznych jest prosty[1] (a więc pozostałe sumują się do kąta prostego); boki tworzące kąt prosty nazywa się przyprostokątnymi, pozostały bok nosi nazwę przeciwprostokątnej[3]; przeciwprostokątna zawsze jest dłuższa od każdej przyprostokątnej;
  • trójkąt rozwartokątny, którego jeden kąt wewnętrzny jest rozwarty[1].
ostrokątnyprostokątnyrozwartokątny
ostrokątnyprostokątnyrozwartokątny

Trójkąty można dzielić również ze względu na inne relacje równoważności, np. podobieństwo, przystawanie.

Ważne elementy

Wysokość trójkąta to prosta zawierająca jego wierzchołek i prostopadła do prostej zawierającej przeciwległy bok[3]. Słowem „wysokość” często też nazywany jest odcinek wysokości, łączący wierzchołek z punktem na prostej zawierającej przeciwległy bok; długość tego odcinka też nazywa się wysokością. Każdy trójkąt ma trzy wysokości, które przecinają się w punkcie zwanym ortocentrum tego trójkąta.

Środkowa trójkąta to prosta zawierająca wierzchołek trójkąta i środek przeciwległego boku[1]. Każdy trójkąt ma trzy środkowe, które przecinają się w jednym punkcie[1], będącym środkiem geometrycznym (barycentrum, lub błędnie środkiem masy lub środkiem ciężkości) trójkąta. Punkt ten dzieli każdą ze środkowych na dwie części, przy czym odcinek łączący barycentrum z wierzchołkiem jest dwa razy dłuższy od odcinka łączącego barycentrum ze środkiem boku.

Symetralna boku trójkąta to prosta prostopadła do tego boku i przechodząca przez jego środek[1]. Każdy trójkąt ma trzy symetralne boków, przecinające się w punkcie będącym środkiem okręgu opisanego na tym trójkącie[1].

Dwusieczne kątów wewnętrznych trójkąta przecinają się w punkcie, który jest środkiem okręgu wpisanego w ten trójkąt[1].

Symediana jest odbiciem środkowej w dwusiecznej wychodzącej z tego samego wierzchołka trójkąta.

Punkt Nagela – punkt, w którym przecinają się proste łączące wierzchołki z punktami styczności przeciwległych boków z odpowiednimi okręgami dopisanymi.

Punkt Gergonne'a – punkt przecięcia prostych łączących wierzchołki z punktami styczności przeciwległych boków do okręgu wpisanego w trójkąt.

Punkty Brocarda – w trójkącie ABC o bokach a, b, c znajduje się dokładnie jeden taki punkt P, że proste AP, BP, CP z bokami odpowiednio c, a, b tworzą równe kąty.

Punkt Fermata – punkt, którego suma odległości od wierzchołków trójkąta jest najmniejsza z możliwych.

Triangle.Orthocenter.svgTriangle.Centroid.svgTriangle.Circumcenter.svgTriangle.Incircle.svg
wysokości i ortocentrumśrodkowe i barycentrumsymetralne i okrąg opisanydwusieczne i okrąg wpisany
Prosta Eulera (czerwona) oraz symetralne (zielone), środkowe (pomarańczowe) i wysokości (niebieskie) w trójkącie

W każdym trójkącie punkty przecięcia: środkowych boków symetralnych boków wysokości (odpowiednio: barycentrum, środek okręgu opisanego, ortocentrum) leżą na jednej prostej, zwanej prostą Eulera. Ponadto

Pole powierzchni

Trojkat-Liczenie pola.svg

Przyjmując dla trójkąta następujące oznaczenia:

– długości boków;
– wysokości opuszczone na boki odpowiednio
– kąty leżące naprzeciw boków odpowiednio
– pole powierzchni;
– promień okręgu opisanego;
– promień okręgu wpisanego;
– połowa obwodu;

dostaniemy następujące wzory na pole powierzchni[3]:

Poglądowy dowód wzoru na pole powierzchni trójkąta wynoszącego połowę iloczynu podstawy i opadającej na nią wysokości.
(wzór Herona);
(postać wyznacznikowa).

Z powyższych wzorów można wyprowadzić również następujące:

W geometrii analitycznej przyjmując dla wierzchołków trójkąta[3]

dostaniemy także następujące wzory:

czyli

Środek geometryczny

Trójkąt, którego wierzchołki mają współrzędne kartezjańskie:

ma środek geometryczny (barycentrum) w punkcie:

Nierówność trójkąta

Wizualizacja „działania” nierówności trójkąta

W każdym trójkącie o bokach, których długości wynoszą i zachodzi następująca nierówność, zwana nierównością trójkąta:

i analogicznie

Trójkąt o bokach, których długości wynoszą i istnieje wtedy i tylko wtedy, gdy spełnione są te trzy nierówności. Można je zapisać w równoważnej postaci:

Geometrie nieeuklidesowe

Na płaszczyźnie euklidesowej suma miar kątów wewnętrznych trójkąta jest równa kątowi półpełnemu, czyli

W geometriach innych niż euklidesowa suma kątów wewnętrznych nie musi wynosić 180°. Na przykład osoba, która pójdzie z bieguna północnego 10 tys. km na południe, 10 tys. km na zachód, a potem 10 tys. km na północ znajdzie się z powrotem na biegunie, choć dwukrotnie skręciła o 90°, więc trójkąt przez nią zakreślony ma sumę kątów większą niż 180°, a dokładnie 270°. Dzieje się tak, gdyż na sferze (dobre przybliżenie powierzchni geoidy) obowiązuje geometria eliptyczna, a nie euklidesowa. Dowód własności, że w przestrzeni euklidesowej suma kątów w trójkącie wynosi 180°, opiera się na piątym aksjomacie Euklidesa, który wyróżnia geometrię euklidesową spośród innych geometrii.

Zobacz też

Przypisy

  1. a b c d e f g h i j k l m n Encyklopedia szkolna, s. 287.
  2. trójkąt, [w:] Encyklopedia PWN [online] [dostęp 2021-09-29].
  3. a b c d Encyklopedia szkolna, s. 288.

Bibliografia

Media użyte na tej stronie

Nierownosc trojkata.svg
Autor: Bartek444, Licencja: CC BY-SA 4.0
Nierówność trójkąta
Euler line.svg
Autor: Autor nie został podany w rozpoznawalny automatycznie sposób. Założono, że to 4C~commonswiki (w oparciu o szablon praw autorskich)., Licencja: CC-BY-SA-3.0
Illustration of Euler's line in a triangle
Triangle.Circumcenter.svg
Circumcenter of a triangle
Triangle.Incircle.svg
The incenter of a triangle
Triangle.Equilateral.svg
An equilateral triangle.
Triangle with notations 2.svg
Triangle with notations for sides and angles..
Trojkat-Liczenie pola.svg
Autor: Wersję rastrową wykonał użytkownik polskiego projektu wikipedii: Andrut, Zwektoryzował: Krzysztof Zajączkowski, Licencja: CC BY-SA 2.5
Rysunek ma na celu pomoc w zapamiętaniu i zrozumieniu jednego z podstawowych wzorów na pole trójkąta
Triangle.Isosceles.svg

en:Image:Triangle.Isosceles.svg

Açıklamaya burdan ulaşabilirsiniz.
Triangle.Acute.svg
Autor: unknown, Licencja: Copyrighted free use