Trysekcja kąta
Trysekcja kąta – jeden z trzech (obok podwojenia sześcianu i kwadratury koła) wielkich problemów matematyki greckiej. Polega on na podziale kąta na trzy równe części[1] jedynie przy użyciu cyrkla i liniału. W roku 1837 Pierre Wantzel udowodnił, że konstrukcja taka w ogólnym przypadku jest niewykonalna. Posługując się narzędziami teorii Galois można wykazać, że dla danego kąta kąt o mierze jest konstruowalny wtedy i tylko wtedy, gdy wielomian
jest rozkładalny w ciele
Konstrukcja Archimedesa
Rezygnując z wymogu użycia tylko cyrkla i liniału, można dokonać trysekcji kąta ostrego, wykorzystując konstrukcję Archimedesa (konstrukcja neusis). Używa się do niej cyrkla i liniału z zaznaczonymi dwoma punktami X i Y. Najpierw należy nakreślić okrąg o środku O (gdzie O – wierzchołek kąta) i promieniu Punkty przecięcia okręgu z ramionami kąta oznaczyć jako A i B. Następnie poprowadzić prostą OA oraz prostą za pomocą linijki tak, aby jeden z zaznaczonych na linijce punktów np. X należał do prostej OA, zaś (drugi zaznaczony na linijce punkt) Y należał do okręgu i tak by prosta przechodziła przez punkt B. Wówczas proste OA i przetną się pod kątem
Przypisy
- ↑ trysekcja kąta, [w:] Encyklopedia PWN [online] [dostęp 2021-09-29] .
Bibliografia
- Jerzy Browkin: Teoria ciał. Państwowe Wydawnictwo Naukowe, 1978.
- Agnieszka Nawrot Sabak: Encyklopedia Matematyka. Kraków: GREG, 2008, s. 245. ISBN 978-83-7517-015-3.
Linki zewnętrzne
- (ang.) John J O’Connor, Edmund F. Robertson, Trysekcja kąta w MacTutor History of Mathematics archive
Media użyte na tej stronie
Autor: Skrzeczu, Licencja: CC BY-SA 3.0
Trysekcja kąta ostrego - konstrukcja Archimedesa