Węglowce

Grupa →

14
IVA
↓ Okres

2

6
C
3

14
Si
4

32
Ge
5

50
Sn
6

82
Pb
7

114
Fl
Węglowce

Węglowcepierwiastki 14 (daw. IVA lub IV głównej) grupy układu okresowego. Są to węgiel (C), krzem (Si), german (Ge), cyna (Sn), ołów (Pb) i flerow (Fl).

Odkrycie

Węgiel – grafit
Węgiel – diament
Węgiel – fulleren C 60
Krzem
German
Cyna (β i α)
Ołów

Trzy z sześciu węglowców znano już w starożytności. Były to węgiel, cyna i ołów. Krzem i german zostały odkryte w epoce nowożytnej (krzem przez Antoine Lavoisiera, zaś german przez Clemensa Alexandera Winklera). Flerow został otrzymany sztucznie w 1999 roku przez naukowców z Instytutu Badań Jądrowych w Dubnej.

Występowanie w przyrodzie

Węgiel wchodzi w skład licznych związków organicznych. Ponadto występuje w przyrodzie w postaci węgli kopalnych. Najważniejszym minerałem zawierającym węgiel jest węglan wapnia. Dużo rzadziej spotyka się go w postaci diamentów. W środowisku naturalnym wyjątkowo daje się odnaleźć w formie fulerenów (np. w strzałkach piorunowych).

Krzem zajmuje drugie miejsce pod względem zawartości na Ziemi (zaraz po tlenie). Nie występuje jednak w stanie wolnym, ale w postaci krzemionki, krzemianów i glinokrzemianów.

German występuje w przyrodzie w niewielkich ilościach, tylko w postaci związków, np. minerałów takich jak germanit (Cu2GeS3) i argyrodyt (Ag8GeS6). Niewielkie ilości germanu są zawarte w węglu kamiennym.

Głównym źródłem cyny są minerały: kasyteryt (SnO2), stannin (Cu2FeSnS4).

Ołów występuje w niewielkich ilościach w postaci rodzimej, jednak jego głównym źródłem jest galena (PbS).

Flerow jest syntetycznym pierwiastkiem promieniotwórczym i nie występuje na Ziemi.

Właściwości

Ze wzrostem liczby atomowej w tej grupie maleje wpływ biernej pary elektronowej. Wynikiem tego jest malejąca trwałość pierwiastków na IV stopniu utlenienia i rosnąca na II. Wszystkie z nich oprócz ołowiu tworzą struktury diamentu, przy czym w przypadku węgla odmiana ta jest izolatorem, a dalsze pierwiastki są, z powodu malejącej szerokości pasma wzbronionego, półprzewodnikami i przewodnikami.

Węgiel jest ciałem stałym, nierozpuszczalnym w wodzie. Grafit jest czarnoszary, odpowiednio wypolerowany ma metaliczny połysk. Diament jest bezbarwny, bezwonny, nie ma smaku. Jest pierwiastkiem mało reaktywnym; w wysokiej temperaturze reaguje z fluorem, tlenem, siarką i metalami 1, 2 i 13 grupy. Rozżarzony koks reaguje z wodą, dając mieszaninę tlenku węgla i wodoru (tzw. gaz syntezowy): C + H2O → CO + H2.

Tworzy trzy odmiany alotropowe:

W związkach chemicznych występuje na -IV, II i IV stopniu utlenienia.

Krzem to szare, błyszczące, kruche ciało stałe. Jest półprzewodnikiem. W związkach jest czterowartościowy. Występuje, podobnie jak węgiel, w strukturze diamentu.

German jest kruchym, srebrzystobiałym półmetalem o właściwościach półprzewodnikowych. Nie reaguje z wodą i kwasami (oprócz kwasu azotowego).

Cyna jest ciałem stałym. Występuje w trzech odmianach krystalicznych:

  • Cyna α – ma strukturę diamentu, która ma właściwości półprzewodnikowe; występuje jako proszek barwy szarej; przemiana w cynę β zachodzi powoli w temperaturze 13,2 °C i wyższej;
  • Cyna β – srebrzystobiała z niebieskawym odcieniem;
  • Cyna γ.

W związkach chemicznych cyna występuje na -IV, II i IV stopniu utlenienia.

Ołów to szarosrebrzysty, miękki, kowalny metal. Na powietrzu pokrywa się warstwą tlenku. Jego sole są zazwyczaj słabo rozpuszczalne lub nierozpuszczalne w wodzie (z wyjątkiem azotanu ołowiu(II) i octanu ołowiu(II)).

Właściwości węglowców w związkach z wodorem

Związki wodoru z:

  • węglem to węglowodory;
  • krzemem silany;
  • germanem germanany;
  • cyną stannany;
  • ołowiem plumbany.

W szeregu od węgla do ołowiu maleje trwałość tych związków.

Węgiel tworzy najwięcej związków z wodorem (węglowodory) dzięki trwałym wiązaniom węgiel-węgiel (katenacja). Są one trwałe i jako jedyne z tej grupy nie hydrolizują w wodzie. Pierwszy krzemowodór (SiH4) jest nietrwały w środowisku wodnym i na powietrzu.

Najważniejsze związki chemiczne węglowców

Węgiel:

Krzem:

German:

  • Germanowodory
  • Siarczek germanu(II) (GeS)
  • Siarczek germanu(IV) (GeS4)
  • Tlenek germanu(II) (GeO)
  • Tlenek germanu(IV) (GeO2)

Cyna:

  • Tlenek cyny(II) (SnO)
  • Tlenek cyny(IV) (SnO2)
  • Kwas cynowy ((SnO2)x•(H2O)y)
  • Wodorotlenek cyny(II) (Sn(OH)2)
  • Cynowodór (SnH4)
  • Siarczek cyny(II) (SnS)
  • Siarczek cyny(IV) (SnS2)
  • Chlorek cyny(II) (SnCl2)
  • Chlorek cyny(IV) (SnCl4)

Ołów:

Otrzymywanie

Węgiel do celów laboratoryjnych otrzymuje się przez prażenie sacharozy bez dostępu tlenu z powietrza. Na skalę przemysłową otrzymuje się go z węgli kopalnych, przez rozkład termiczny drewna oraz jako diament.

Krzem można otrzymać w laboratorium przez redukcję krzemionki magnezem: SiO2 + 2 Mg → 2 MgO + Si. Na skalę przemysłową redukuje się krzemionkę węglem (SiO2 + C → CO2 + Si) lub węglikiem wapnia.

Pozostałe trwałe węglowce są otrzymywane przez redukcję ich tlenków. Ołów można otrzymać elektrolitycznie z jego siarczku. Flerow można uzyskać wyłącznie w reakcjach jądrowych.

Zastosowanie

Węgiel jest podstawowym składnikiem związków organicznych. Diament służy do wyrobu biżuterii. Ze względu na jego twardość używa się go także do wyrobu narzędzi do obróbki stali i szkła. Grafit jest używany do wyrobu elektrod, grafitów do ołówków i tygli laboratoryjnych. Węgle kopalne są wykorzystywane jako surowce energetyczne. Izotop węgla 14C jest stosowany jako wskaźnik izotopowy, zaś 1/12 masy izotopu 12C stanowi wzorzec jednostki masy atomowej.

Krzem o dużym stopniu czystości jest stosowany do wyrobu półprzewodników. Jest też stosowany do odtleniania specjalnych gatunków stali i jako składnik wielu stopów. Krzem i jego związki są surowcami w przemyśle szklarskim, ceramicznymi materiałów budowlanych.

German stosuje się do produkcji półprzewodników, luminoforów, filtrów optycznych i stopów specjalnych.

Cyna jest używana do pokrywania metali mniej odpornych na korozję. Jest też składnikiem stopów. W średniowieczu wykonywano wiele przedmiotów z cyny, ze względu na jej dostępność i niską cenę.

Ołów służy do wyrobu rur kanalizacyjnych i ekranów chroniących przed promieniowaniem. Wykłada się nim także komory do produkcji kwasu siarkowego, celulozy i wapna bielącego. Ołowiu używa się też do wyrobu płyt akumulatorowych, szkła ołowiowego i do otrzymywania innych związków ołowiu.

Media użyte na tej stronie

C60-Fulleren-kristallin.JPG
Autor: Fotograf: Jochen Gschnaller, Licencja: CC-BY-SA-3.0
C60 Buckminsterfullerene, crystallized. From the Leopold-Franzens-Universität Innsbruck.
SiliconCroda.jpg
Close up photo of a piece of purified silicon.
Sn-Alpha-Beta.jpg
Autor: Alchemist-hp (talk) (www.pse-mendelejew.de), Licencja: CC BY-SA 3.0 de
purest tin 99,999 % = 5N, beta (left, white) and alpha (right, gray) allotropes.
Diamond.jpg
Autor: unknown, Licencja: CC BY 1.0
Lead electrolytic and 1cm3 cube.jpg
Autor: Alchemist-hp (talk) (www.pse-mendelejew.de), Licencja: FAL
Grudki czystego ołowiu (99,989 %) rafinowanego elektrolitycznie oraz sześcian (1 cm3) wykonany z ołowiu o tej samej czystości.
Germanium.jpg
Autor: by Gibe (selfmade), Licencja: CC-BY-SA-3.0
elementares Germanium