Wartość oczekiwana

Wartość oczekiwana (wartość średnia, przeciętna, dawniej nadzieja matematyczna) – wartość określająca spodziewany wynik doświadczenia losowego. Wartość oczekiwana to inaczej pierwszy moment zwykły. Estymatorem wartości oczekiwanej rozkładu cechy w populacji jest średnia arytmetyczna.

Definicja formalna

Jeżeli jest zmienną losową na przestrzeni probabilistycznej o wartościach w to wartością oczekiwaną zmiennej losowej nazywa się liczbę

[1] o ile ona istnieje, tzn. jeżeli:
[2].

Zmienna dyskretna

W przypadku, gdy zmienna losowa ma rozkład dyskretny i przyjmuje tylko skończenie wiele wartości z prawdopodobieństwami wynoszącymi odpowiednio to z powyższej definicji wynika następujący wzór na wartość oczekiwaną [3]:

[4].

Jeżeli zmienna przyjmuje nieskończenie, ale przeliczalnie wiele wartości, to we wzorze na jej wartość oczekiwaną występuje w miejsce (istnieje ona tylko wtedy, gdy szereg ten jest zbieżny bezwzględnie).

Własności

Jeśli jest zmienną losową o funkcji gęstości prawdopodobieństwa to jej wartość oczekiwana wynosi

Jeżeli jest funkcją mierzalną, to

Jeśli istnieją oraz to:

  • gdzie jest funkcją stałą (wynika z jednorodności sumy/szeregu/całki),
  • (wynika z liniowości sumy/szeregu/całki),
  • jeżeli niezależne, to
  • jeżeli prawie wszędzie, to

W mechanice kwantowej

Pojęcie wartości oczekiwanej jest szeroko stosowane w mechanice kwantowej. Wartość oczekiwana obserwabli, której odpowiada operator dla stanu kwantowego układu opisywanego znormalizowaną funkcją falową wynosi gdzie całkowanie przebiega po wszystkich możliwych wartościach zmiennych układu.

W notacji Diraca wzór ten można zapisać:

Nieoznaczoność wartości oczekiwanej czyli wariancja wynosi

Przypisy

  1. J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, Warszawa 2010, s. 82.
  2. J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, Warszawa 2010, s. 81.
  3. Wartość oczekiwana, [w:] Encyklopedia PWN [online] [dostęp 2021-07-22].
  4. J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, Warszawa 2010, s. 85.

Bibliografia

  • Jacek Jakubowski, Rafał Sztencel: Wstęp do teorii prawdopodobieństwa. Warszawa: Script, 2004. ISBN 83-89716-01-1.