Dla funkcji spełniającej warunek Lipschitza istnieje podwójny stożek (biały), którego wierzchołek można przesuwać wzdłuż wykresu funkcji, a wnętrze pozostaje rozłączne z tym wykresem.
Warunek Lipschitza – pewne wzmocnienie ciągłości jednostajnej funkcji. Intuicyjnie można powiedzieć, że własność ta oznacza, że szybkość zmian wartości funkcji jest ograniczona. Nazwa pochodzi od nazwiska matematyka niemieckiego Rudolfa Lipschitza.
Definicja
Funkcja spełnia warunek Lipschitza ze stałą gdy dla dowolnych zachodzi nierówność
Definicja ta naturalnie rozszerza się na funkcje określone pomiędzy przestrzeniami metrycznymi.
Niech będą przestrzeniami metrycznymi. Funkcja spełnia warunek Lipschitza ze stałą gdy dla dowolnych zachodzi nierówność
Najmniejszą liczba dla której powyższa nierówność zachodzi dla wszelkich (o ile istnieje) nazywana jest stałą Lipschitza funkcji Funkcje spełniające warunek Lipschitza ze stałą nazywane są kontrakcjami.
Podstawowe własności
- Niech będzie funkcją różniczkowalną. Wówczas spełnia warunek Lipschitza ze stałą Lipschitza wtedy i tylko wtedy, gdy jej pochodna jest ograniczona przez
- Dowód. Załóżmy, że spełnia warunek Lipschitza ze stałą Niech Wówczas dla
- Stąd By udowodnić przeciwną implikację, załóżmy, że dla wszelkich Niech Bez straty ogólności, można przyjąć, że Z twierdzenia Lagrange’a o wartości średniej wynika, że istnieje takie że
- Ponieważ
- co pokazuje, że spełnia warunek Lipschitza ze stałą
- Dowód. Niech będzie funkcją spełniającą warunek Lipschitza ze stałą Niech oraz niech dany będzie Gdy to o ile tylko Rozumowanie to przenosi się mutatis mutandis na funkcje lipschitzowskie działające pomiędzy dowolnymi przestrzeniami metrycznymi.
- Niech będzie przestrzenią z miarą oraz niech będzie ciągiem funkcji rzeczywistych na Jeżeli ciąg ten jest zbieżny według miary do pewnej funkcji oraz funkcja spełnia warunek Lipschitza, to ciąg jest zbieżny według miary do
Przykłady
- Funkcja dana wzorem
- spełnia warunek Lipschitza ze stałą Rzeczywiście, dla zachodzi
- Funkcja dana wzorem jest funkcją nieróżniczkowalną spełniającą warunek Lipschitza ze stałą
- Funkcja dana wzorem nie spełnia warunku Lipschitza, bo nie jest jednostajnie ciągła.
- Niech Funkcja dana wzorem spełnia warunek Lipschitza ze stałą gdy oraz ze stałą gdy
Twierdzenia dotyczące warunku Lipschitza
- twierdzenie Kirszbrauna
- twierdzenie Picarda
- twierdzenie Rademachera