Wielomiany Hermite’a – wielomiany o współczynnikach rzeczywistych, będące rozwiązaniem równania rekurencyjnego
przy warunkach początkowych
Wielomiany Hermite’a są między innymi wykorzystywane do opisu kwantowego oscylatora harmonicznego.
Równoważne definicje
Pierwszy z tych wzorów bywa nazywany wzorem Rodriguesa[1]:
Wykładnicza funkcja tworząca
Wykładniczą funkcją tworzącą wielomianów Hermite’a jest
Innymi słowami – jeśli rozwiniemy
w szereg Maclaurina względem zmiennej współczynnikiem przy będzie
Wykresy pierwszych czterech wielomianów
Wykres pierwszych czterech wielomianów Hermite’a
Własności wielomianów Hermite’a
- jest wielomianem -tego stopnia.
czyli dla parzystego jest funkcją parzystą, a dla nieparzystego – funkcją nieparzystą.
czyli wielomiany Hermite’a tworzą układ wielomianów ortogonalnych z funkcją wagową
Zobacz też
Przypisy
Bibliografia
- Leonard I. Schiff, Mechanika kwantowa, PWN, Warszawa 1977, s. 73.