Znak równości
Ten artykuł jest częścią serii Historia oznaczeń matematycznych |
Symbol działania |
Według działów |
Stałe matematyczne |
Edytuj szablon |
Znak równości (ang. Equals sign) – symbol matematyczny używany dla oznaczenia równości. Znak równości stawiamy między dwoma przedmiotami, o których twierdzimy, że są równe.
Historia
Znak równości miał zostać wprowadzony w 1557 roku przez walijskiego matematyka Roberta Recorde'a w książce The Wheatstone of Witte. Równość przez lata przedstawiana była przy pomocy słów, takich jak aequales, aequantur, esgale, faciunt, ghelijck czy gleich, czasami w skróconej formie (np. aeq). Jak wyjaśnia Recorde w swojej książce[1], wprowadził znak = dla uniknięcia ciągłego pisania słów „jest równe”, zaś właśnie taki kształt nadał mu, gdyż – jak pisał – nic nie może być bardziej równego, niż dwa równoległe odcinki tej samej długości[2].
Autorstwo Recorde'a jest kwestionowane, gdyż symbol ten pojawia się w manuskrypcie przechowywanym w bibliotece Uniwersytetu w Bolonii, datowanym na lata 1550–1568 – możliwe jest więc, iż któryś z bolońskich uczonych wprowadził to oznaczenie przed Recorde'em.
Znak równości został później na pewien czas porzucony. Ponownie pojawił się w anonimowym dodatku do angielskiego wydania Descriptio Napiera, w tłumaczeniu Edwarda Wrighta, z 1618 roku (autorstwo dodatku przypisuje się Williamowi Oughtredowi).
Kod znaku
W Unicode znaki równości przybierają następujące postacie:
Znak | Unicode | Kod HTML | Nazwa unikodowa | Nazwa polska |
---|---|---|---|---|
= | U+003D | = lub = | EQUALS SIGN | znak równości |
≃ | U+2243 | ≃ lub ≃ | ASYMPTOTICALLY EQUAL TO | asymptotycznie równe |
≅ | U+2245 | ≅ lub ࣅ lub ≅ | APPROXIMATELY EQUAL TO | w przybliżeniu równe |
≈ | U+2248 | ≈ lub ࣈ lub ≈ | ALMOST EQUAL TO | prawie równe |
≝ | U+225F | áF; lub ≝ | EQUAL TO BY DEFINITION | równe z definicji |
≡ | U+2261 | ≡ lub≡ lub ≡ | IDENTICAL TO | identyczne |
Powiązane i podobne symbole
- Symbol oznaczający przybliżoną równość: ≈.
- Symbol oznaczający, że dwa przedmioty nie są równe: ≠ ; w językach programowania używa się najczęściej symboli:
!=
,<>
,~=
. - Symbol ≡ oznacza najczęściej identyczność lub relację kongruencji.
- Symbol := oznacza zwykle definicję; używa się też oznaczenia ::=.
- Np. w języku programowania Pascal
=
służy do porównywania, a do przypisywania wartości:=
. Natomiast w języku C i pokrewnych=
służy do przypisywania wartości, a do porównywania==
. Dodatkowo, m.in. w PHP,===
może oznaczać porównanie z uwzględnieniem typu.
Zobacz też
- Symbol działania
Przypisy
- ↑ Zarchiwizowana kopia. [dostęp 2001-11-25]. [zarchiwizowane z tego adresu (2001-11-25)].
- ↑ Matematyka, Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1990 (Encyklopedia szkolna), s. 238, ISBN 83-02-02551-8 .
Klawiatura komputerowa zgodna z PC (Windows, układ QWERTY) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Esc | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | PrtSc/ SysRq | ScrLk | Pause/ Break | |||||||||
Ins | Home | PgUp | Num | / | * | - | ||||||||||||||||||
Del | End | PgDn | 7 | 8 | 9 | + | ||||||||||||||||||
4 | 5 | 6 | ||||||||||||||||||||||
↑ | 1 | 2 | 3 | Ent | ||||||||||||||||||||
← | ↓ | → | 0 | . |
Linki zewnętrzne
- Strona z książki The Wheatstone of Witte. members.aol.com. [zarchiwizowane z tego adresu (2001-11-25)]. (ang.)
- Historia znaku równości (ang.)
Media użyte na tej stronie
Autor: Autor nie został podany w rozpoznawalny automatycznie sposób. Założono, że to Denelson83 (w oparciu o szablon praw autorskich)., Licencja: CC-BY-SA-3.0
"United States" keyboard layout
Created in Inkscape. Text converted to paths due to use of an uncommon font.Robert Recorde's explanation of the first usage of the mathematical equals sign from which the current "=" symbol origins.
Rhind Mathematical Papyrus : detail (recto, left part of the first section British Museum Department of Ancient Egypt and Sudan, EA10057)
Acquired by the Scottish lawyer A.H. Rhind during his sojourn in Thebes in the 1850s. length: 295.5 cm, width: 32 cm (whole section EA10057)
A second section is kept in the British Museum (EA 10058 length: 199.5 cm, same width)
Fragments of a small intermediate section (18 cm length) are kept in the Brooklyn Museum